
AD-A266 617

ACM SIGPLAN
Workshop on ML and its Applications

Peter Lee, Editor

June 1992
CMU-CS-93-105 DTIC

J.UL0 6 1993
School of Computer Science B i69
Carnegie Mellon University

Pittsburgh, PA 15213

The Workshop on ML and its Applications was held
June 20-21, 1992 in San Francisco, CA, in conjunction with the

ACM SIGPLAN '92 Conferences and Workshops.

Abstract

The Workshop on ML and its Applications was held June 20-21, 1992 in San Francisco, CA, in
conjunction with the ACM SIGPLAN '92 Conferences and Workshops. The ML programming
language has been an important tool and framework for research in language design and
implementation. As the language and its implementations have matured, the range of
applications has increased greatly. New applications, combined with new ideas in design and
implementation, have stimulated a large number of significant activities in research and software
development. This workshop, like the previous workshops in Princeton, Edinburgh, and
Pittsburgh, provided a forum for theses activities, with a special emphasis on applications of the
language. A total of 21 abstracts were selected for presentation and discussion at the workshop:
12 were chosen for conference-style presentations and 9 for presentation in a poster session.

93-15196

IN I iiI I I ilii

ISULAIMEI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

K r P

Keywords: Programnilng languages, ML

ACM SIGPLAN Workshop on ML and its Applications
San Francisco, Califormia

June 20-21, 1992

Workshop Committee

General Chair
David MacQueen AT&T Bell Laboratories

Program Chair
Peter Lee Carnegie Mellon University

Program Committee
Simon Finn Abstract Hardware, Ltd.
Emden Gansner AT&T Bell Laboratories
Robert Harper Carnegie Mellon University
Peter Lee Carnegie Mellon University
Michel Mauny INRIA
John Mitchell Stanford University
Mads Tofte University of Copenhagen

Aooession For
NTIS GIZA&I •

DTIC TAB [

D'ic tj •-' :2-Cr=D 8 Unarnounced C1

Di tiicut

Avall an4tor
Dist Special

Foreword

The Workshop on ML and its Applications was held on June 20 and 21, 1992, in San Francisco,
California, in conjunction with the ACM SIGPLAN '92 Conferences and Workshops.

The ML programming language has been an important tool and framework for research in
language design and implementation. As the language and its implementations have matured,
the range of applications has increased greatly. New applications, combined with new ideas in
design and implementation, have stimulated a large number of significant activities in research and
software development. This workshop, like the previous workshops in Princeton, Edinburgh, and
Pittsburgh, provided a forum for these activities, with a special emphasis on applications of the
language.

A total of 21 abstracts were selected for presentation and discussion at the workshop. Of
these, 12 were chosen for conference-style presentations and 9 for presentation in a poster session.
Four-page abstracts were submitted, almost all by electronic mail. The abstracts were not formally
refereed, but were reviewed by all members of the program committee. Technical excellence,
originality, and relevance to the theme of "applications" were the main selection criteria. Most of
the abstracts that focused primarily on a particular application of ML, as opposed to a language
extension or implementation, were grouped into the poster session. Unfortunately, many very
good abstracts were not selected, in part to keep a good workshop focus, and also to leave enough
room in the schedule for informal discussions. A goal of the program committee was to encourage
participation by as many people as possible, while still retaining a productive workshop atmosphere.

We would like to thank all of the authors who submitted abstracts, whether accepted or not.
The large number of submissions is a testament to the importance and excitement surrounding the
ML language.

ii

ACM SIGPLAN Workshop on ML and its Applications
San Francisco, California

June 20-21, 1992

Saturday, June 20,1992

Welcome: 9:00-9:15 a.m.

Session 1: 9:15-10:45 a.m. Design and Implementation of ML.
Chair: Michel Mauny (INRIA)
Abstract Value Constructors

William E. Aitken and John H. Reppy (Cornell University) 1
Efficient Representation of Extensible Records

Didier Rimy (INRIA-Rocquencourt) ... 12
A General and Practical Approach to Concrete Syntax Objects within ML

Mikael Petterson and Peter Fritzson (Link6ping University, Sweden) 17

Session 2: 11:15 a.m.-12:30 p.m. Code Generators for ML.
Chair: Robert Harper (Carnegie Mellon University)
An Optimizing ML to C Compiler

Regis Cridlig (Ecole Normale Supirieure and INRIA-Rocquencourt) 28
An Efficient Way of Compiling ML to C

Emmanuel Chailloux (LIENS-LITP, France) 37
Standard ML for MS-Windows 3.0

Yngvi S. Guttese (The Technical University of Denmark) 52

Poster Session 3: 2:30-4:30 p.m. Applications of ML.
Chair: Peter Lee (Carnegie Mellon University)

Sunday, June 21,1992

Session 4: 9:30-11:00 a.m. Type System Extensions.
Chair: John Mitchell (Stanford University)
Completely Bounded Quantification is Decidable

Dinesh Katiyar and Sriram Sankar (Stanford University) 68
An Extension of ML with First-Class Abstract Types

Konstantin Ldufer (New York University) and Martin Odersky (Yale University) 78
Dynamic Typing in Polymorphic Languages

Martin Abadi (DEC SRC), Luca Cardelli (DEC SRC), Benjamin Pierce
(University of Edinburgh), and Didier Rimy (INRIA Rocquencourt) 92

I11.i

Session 5: 11:30 a.m.-1:00 p.m. Applications of ML.
Chair: Emden Gansner (AT&T Bell Laboratories)
Extensions to Standard ML to Support Transactions

Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett, and Scott Nettles
(Carnegie Mellon University) .. 104

Programming Images in ML
Emmanuel Chailloux (LIENS-LITP, France) and Guy Cousineau (LIENS, France) .. 119

Distributed Programming with Asynchronous Ordered Channels in Distributed ML
Robert Cooper and Clifford Krumvieda (Cornell University) 134

Poster Session Summaries.
A Verification Environment for ML Programs

A. Cant and M. A. Ozols (Defence Science and Technology Organization, South
Australia) ... 151

Expressing Fault-Tolerant and Consistency-Preserving Programs in Distributed ML
Clifford D. Krumvieda (Cornell University) 157

Implementing ML on the Fujitsu AP1000
Peter Bailey and Malcolm Newey (Australian National University) 163

Verification of Concurrent Systems in SML
Paola Inverardi (I.E J.-C N.R. Pisa), Corrado Priami (University of Pisa), and
Daniel Yankelevich (University of Pisa and HP Labs, Pisa Science Center) 169

A File System in Standard ML
Drew Dean (Carnegie Mellon University) 175

Implementing a Mixed Constructive Logic in Standard ML
James T. Sasaki (University of Maryland Baltimore County) and Ryan Stansifer
(University of North Texas) .. 181

Experiences with ML for Building an Al Planning Toolbox
Tom Gordon, Joachim Hertzberg, and Alexander Horz (GMD, Al Division) 187

Attribute Grammars in ML
Sofoklis G. Efremidis (Cornell University), Khalid A. Mughal (University of
Bergen, Norway), and John H. Reppy (AT&T Bell Laboratories) 194

ML and Parsing-A Position Paper
Nick Haines (Carnegie Mellon University) 201

iv

Abstract Value Constructors

William E. Aitken* John H. Reppyt

Cornell University Cornell University:
aitkenQcs .cornell. edu jhr~research. att .com

April 10, 1992

1 Introduction

Standard ML (SML) has been used to implement a wide variety of large systems, such as
compilers, theorem provers and graphics libraries; even operating systems have been contem-
plated. While SML provides a high-level notation for programming large applications, there
are some missing language features. One such feature is a general mechanism for assigning
symbolic names to constant values. We present a simple extension of SML that corrects this
deficiency in a way that fits naturally with the semantics of SML [MTH90, MT91]. Our
proposal generalizes SML's datatype constructors: constants generalize nullary datatype
constructors (like nil), and templates generalize non-nullary datatype constructors (like
: :). Constants are identifiers bound to fixed values, and templates are identifiers bound
to structured values with labeled holes. Templates are useful because they allow abstract
access to user defined types. In the remainder of the paper, we give examples of the utility
of our mechanism, informally explain its semantics, discuss its implementation, describe the
interaction between our mechanism and the module system, and discuss related work.

2 ML datatypes and patterns

The SML datatype mechanism provides a high-level mecha lism for declaring new structured
types. For example, the declaration

datatype 'a list = nil I ::o ('ao * a list)

*This work supported, in part, by the ONR under contract N00014-88-K-0409.
t This work was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862, and by the

NSF under NSF grant CCR-89-18233.
lCurrent address: AT&T Bell Laboratories, Murray Hill, NJ.

S... • m mm m m •1

defines the standard predefined polymorphic list type. This declaration defines two data
constructors: nil is a nullary constructor representing the empty list, and : : (which is an
infix operator) is the list constructor. The expression 1: :2: :3: :nil evaluates to an integer
list of three elements (SML provides the derived notation [1, 2, 3) for this construction).
Datatypes can also be used to define enumerations; for example,

datatype direction-t = NORTH I SOUTH I EAST I WEST

The utility of datatypes is greatly enhanced by the use of pattern matching in function
definitions to do case analysis and value decomposition. For example, the following function
takes a list of strings and returns a list with commas inserted between adjacent elements:

fun commas 0 = 0
I commas [s] = [s]
I commas (s::r) = s :: "," :: (commas r)

This function consists of three rules (or equations). The left side of a rule is a pattern, the
right side is an expression to be evaluated when the pattern is matched. The first rule in
comas matches the empty list. The second matches the singleton list and binds the list's
element to s. Theoretically, the third matches any list of one or more elements, but, since
the order of equations defines their precedence, it in fact matches only lists of two or more
elements; it binds s to the head of the list and r to the tall. Patterns in SML are linear,
i.e., a variable may occur at most once in a pattern.

The data constructors defined by datatypes have a dual nature; they are used both to
construct values (when they used in expressions), and to destruct values (when they are
used in patterns). We use the term value constructor to refer to identifiers with this dual
nature. If no confusion with type constructors is possible, we abbreviate this to constructors.
Our extension of SML provides another mechanism through which identifiers with this dual
nature may be defined. Since the values constructed using the data constructors of a
datatype belong to the datatype's type, they are effectively distinct from any pre-existing
values. Our mechanism allows the definition of constants, that is value constructors that
refer to fixed pre-existing values, and the definition of templates, that is value constructors
that refer to fixed, structured values with named holes. Templates can be thought of as
the constructors for families of pre-existing values in the same way that non-nullary data
constructors may be thought of as constructors for families of new values.

3 Constants

The use of symbolic names to refer to constant values is an essential tool in the writing
of understandable, maintainable software. Every systems programming language provides
some sort of support foi symbolic constants: C has a powerful macro pre-processor, Modula-
3 has constant declarations, and so forth. In SML, val bindings allow values to be given
symbolic names, but these names cannot be matched against in patterns. This is a serious

2

limitation because pattern matching is the principal mechanism for case analysis and the
decomposition of structured values. It is also possible, using the datatype declaration, to
declare identifiers that may be matched against in patterns; however, these are not sym-
bolic names for existing values, but rather names for entirely new values. While these two
mechanisms are adequate for many applications, sometimes what is required is a mechanism
that allows identifiers both to be bound to particular values and to be matched against in
patterns.

For example, consider the implementation of an X Window System library. The X Win-
dow System uses a device independent representation of keyboard keys called keysyms. We
need to provide users with a symbolic name for each of them. Clearly, users need to be able
to pattern match against these names so that they can conveniently write programs that
respond to different keystrokes differently. Thus val bindings are not suitable to provide
these names. Using a datatype to represent keysyms is also unsuitable. The wire represen-
tation of a keysym, that is, the representation used by the X server, is a 29 bit integer. If the
library uses a datatype to represent keysyms, it must also include a function to convert from
wire representations to library representations, and another to convert library representa-
tions back into wire representations. It is essential that these functions be mutually inverse.
Since there are literally thousands of keysyms defined - even minimum English language
support requires 512 - these functions present a maintenance nightmare. Furthermore,
the use of such huge functions adds significant run-time overhead to the marshaling and
unmarshaling of messages. Using our mechanism, we can write definitions such as

datatype keysym.t = KEYSYM of iat
const KS-a = KEYSYM 97
const KS.b = KEYSYN 98

Here the representation of a keysym is the constructor KEYSYM wrapped around the wire
representation. (This is a standard idiom for creating new types isomorphic to existing ones.
Compilers can represent keysym.t and int identically, and treat the constructor KEYSYM
as a no-op.) The identifiers KSoa and KS.b are declared as constants that represent the
characters 'a' and 'b'. They can be used both in patterns and in expressions. The identifier
KS-a stands for the structured value (KEYSYM 97). Note that this representation of keysyms
has a further advantage over the datatype representation in that it allows keysyms from
different keysets to be defined in different modules, enabling users to import only those
keysets they actually need.

This use of our mechanism is reminiscent of the *define mechanism of the C language
[KR88] (arguably, this is one area in which C provides a higher-level notation than SML).
SML has a more general pattern matching facility than the C switch statement, and our
symbolic constants reflect that. For example, a calendar program might include the follow-
ing definitions

datatype date = DATE of (month : int, day : int}
const CHRISTMAS = DATE fmonth=12, day=25}

3

4 Templates

Templates are a natural generalization of symbolic constants to allow labeled holes'. They
provide a mechanism to define a concise syntax for a collection of similarly structured values.
A template is defined by a declaration of the form

const id trivpat = paterp

where trivpat is a pattern that involves only variables and record construction, and patezp
is a pattern that contains only variables, record construction, special constants and other
value constructors. Every patezp can be viewed both as a pattern and as an expression
(they are the syntactic intersection of patterns and expressions). Every variable appearing
in trivpat must also appear exactly once in patexp.

For example, the template mechanism allows us to define a template for the days of the
month July using the declaration

coast JULYWx) = DATE{month=7,day=x}

This would allow expressions like JULY(17) to be used to create date values for days in
July. It would also allow code such as

case day
of JULY(4) => "Independence Day"

I - => "not Independence Day"

in which JULY is used as a constructor in a pattern match.

A more substantial and more useful example of templates arises in systems that do
term manipulation (such as the Nuprl proof development system, or code optimizers). For
the sake of concreteness, we set our example in the context of a generalized A-calculus. A
term is either a variable or the application of an operator to a sequence of bound terms.
For example, A and ap are operators and A(z.a) is a term with x bound in the sub-term
a, ard ap(a;b) is term with sub-terms a and b (but no bound variables). One possible
representation of this term language uses a different constructor for each operator.

datatype term
= VAR of var

I LAMBDA of (var * term)
I AP of (term * term)
I PLUS of (term * term)

This representation has a two major deficiencies. First, functions like substitution that
are independent of operators need to be written using many similar cases. Second, often

'The term template was suggested by Dave MacQueen.

4

(for example, in Nuprl), it is desirable to make the set of operators extensible. but. if this
representation of terr-.., is used, the datatype needs to be changed to extend the operator
set, and this requ;-,' a complete recompilation of the program. Furthermore. extension of
the operator s.• !xacerbates the problem with functions like substitution - the addition
of a new operator requires that a new case be added to each such function. The following
representation defines a regular, extensible structure.

datatype operator = OP of string
datatype term

= VAR of var
I TERM of operator * ((vax list * term) list)

Unfortunately, the syntax of expressions and patterns using this representation is quite ugly.
For example, the pattern that matches 03-redices (i.e., terms of the form ap(A(X.s); t) is

TERM(OP "AP", [([,. TERM(OP "LAMBDA", E(Cx), s)1)), (11, t)])

compared to

AP(LAMBDA(x, s), t)

in the first representation. Moreover, the second representation scheme does not provide the
syntactic checking given by the first representation. TERM (OP "LAMBDA", [I) is a perfectly
acceptable member of the type term even though terms formed with the A operator should
always have exactly one subterm in which exactly one variable is newly bound. Additionally,
the use of strings to name operators adds the overhead of string comparison to pattern
matching. All these problems are nicely solved using our mechanism. For example, with
the following declarations

datatype operator = OP of int
datatype term = VAR of var I TERN of operator * ((var list * term) list)
cour, LAMBDAOP = OP 0 and APOP = OP I and PLUSOP = OP 2 and ...
consz AP(p, q) = TERM(APOP, [([], p), (0, q)])

and LAKBDA(x, t) = TERM(LAMBDAOP, E(Ex), t)])
and PLUS(a, b) = TERM(PLUSOP, [(0, a), (0-, b)])

the pattern for 03-redices is again AP(LAMBDA(x, s), t). While the term type still includes
many unintended values, disciplined use of the templates AP, LAMBDA and PLUS makes it
impossible for users to produce these values accidentally. The required discipline can be en-
forced using the module facility. Thus, we get both the succinctness and syntactic checking
of the first representation and the flexibility and regular structure of the second.

5

5 Constructors and the module system

The module system is an important feature of the SML language. Our proposal meshes
elegantly with the module system, and the module system makes the mechanisms of our
proposal even more powerful. Because the module system allows the programmer to limit
the externally visible definitions of a structure, it is possible to limit the constructors avail-
able to users of the structure. For example, in the term example of the previous section, it
might be desirable to limit users to the Lonstructors AP, LAMBDA and PLUS, without giving
them access to the lower level constructors such as TERM, and LAMBDA-OP. This would make
it impossible for users to create junk terms.

Because data constructors are just a special kind of value constructor, it is possible to
provide an interface to a structure in which they are made available as constructors without
having to make their declaration as datatype constructors visible. This in turn allows
the constructors of a datatype to be selectively exported. This is useful if the datatype
declaration includes private constructors that are used to form intermediate values not
valid in input or output.

Our proposal adds constructor specifications to tlie syntax of signatures. Nullary con-
structors are specified by the specification

coast id : type

and unary constructors are specified by the specification

const id : type of type'

In this specification type' gives the type of the argument, and type gives the type of the
constructed values. The syntactic distinction between unary and nullary constructors is
required because, in patterns, unary constructors must always appear with arguments and
nullary constructors may never appear with arguments. The legality of code such as

signature SIG =

sig
type unknown
conast K unknown

end

functor F (A SIG) =
struct

fun f A.K = 17
I f_ = 12

end

depends on K being a nullary operator. Thus it is essential that structures such as

6

structure S = struct
type unknown = int -> int * int
const K x = (x, 12)

end

not be allowed to match SIG. We do this by explicitly associating arities with constructors
rather than inferring them from type information as is done in the standard semantics. This
in turn requires that the arity of constructors be available in signatures.

6 Informal Semantics

We have adapted the formal semantics of SML given in [MTH90, MT91] to handle value
constructors and templates. Because of space limitations, we can only sketch the important
issues here; the interested reader is referred to [AR] for the details.

Clearly, our proposal requires that a value constructor identifier can denote different
values in different program contexts. For example, after the declaration

const MyNumber = 1

the constructor MyNumber must denote the integer 1, while after the declaration

const Mylumber = 2

it must denote the integer 2. To this end, an environment is used to associate constructor
identifiers with their values. Moreover, the values associated with these identifiers must
provide sufficient information to encode their behavior in patterns as well as in expressions.

The semantics of constants is straightforward. We use the environment to associate
each constant identifier c with its value v. Nullary data constructors can be treated in this
way: they are bound to themselves in the environment. When c is used in an expression,
its value is v. Attempts to match a value w against c succeed if w = v and fail otherwise.

The semantics of a template C is given using a pair of functions (C,,): an injection
and a projection. The injection is used to construct values in expressions, and the pro-
jection is used to perform the data destructuring associated with patterns. Non-nuflary
data constructors can be treated in this manner. Using ML-like notation, the functions
corresponding to the data constructor TERM defined above are

TERM, = fn x => TERM x

TERM, = fn (TERM x) => x I - => FAIL

where FAIL is a special value used to denote match failure. Similarly, the functions associ-
ated with the identifier LAMBDA by the template definition given above are

LAMBDA, = fn (x, t) => TERM(LAMBDA.OP, [([x), t)J)

LAMBDA, = fn (TERM(LAMBDA_- OP, [([x], t)])) => (x, t) I - => FAIL

7

Note the appearance of LAMBDAOP in these functions. Since the scope of LAMBDAOP may
differ from that of LAMBDA these functions must record the environment in which they were
defined.

The most importaiit point in the semantics of the module system is the appropriate
definition of signature-structure matching. Informally a signature E matches a structure S
if it is less specific: i.e., has fewer components, less polymorphism, or elides the constant
nature of values. For example, the specification

val nil : int list

matches the standard list constructor nil (which has type 'a list). The specification

const nil : int list

also matches the constructor nil. This can be used to export a limited view of a datatype.
When a structure is constrained by a signature (e.g., when used as the argument to a func-
tor), it is necessary to thin it by removing the unused components. Thinning also involves
mapping constructors to values by discarding their projection functions. To facilitate the
definition of structure thinning, our semantics uses separate environments to associate the
injection and projection components of a constructor's value with the constructor rather
than using a single environment and associating explicit injection-projection pairs with each
constructor.

7 Extensions

In addition to datatype declarations, SML includes two other flavors of value constructors:
exception constructors and the special constructor ref. Treating exception constructors
as value constructors is entirely straightforward. Every time an exception declaration is
evaluated, a new exception name is generated, and associated with the declared exception
identifier in both the value and projection environments. Treating ref as a value constructor
is more difficult. Such a treatment of ref would allow it to be used in constant and template
declarations. Since the semantics of the ref depend on the store, this would mean that the
semantics of all value constructors potentially depend on the store. Furthermore, it is not
entirely clear what the semantics of the constant declared by

const strange = reo I

should even be - should every use of strange in an expression result in a new element of
storage being allocated, or should they all refer to the same address? We do not view this
as a deficiency of our proposal, rather we view it as evidence that SML's treatment of ref
as a constructor is a mistake.

8

One of the asymmetries of the design of SML is that one can define an injection-only
view of a constructor (using a val specification), but not a projection-only view. As an
example of the utility of such a mechanism, consider the implementation of points in a
graphics toolkit. We may want to restrict points to some sub-range of the representable
values, while still using pattern matching to decompose values. This might be done as
follows

abstype pt-t = PTREP of (int * int)
with

exception PtRange
fun mkPt (a, b) =

if (a and b are in range)
then PTREP(a, b)
else raise PtRange

proj PT (x,y) = PTREP (x,y)
end

where the proj declaration defines an identifier that can be used only in patterns. It is safe
to allow wildcards on the right-hand side of projection declarations. Because our framework
separates the injection and projection aspects of constructors, it is fairly straightforward to
add this kind of mechanism.

8 Implementation

We have built a simple testbed implementation of our proposal. At compile time, template
identifiers are bound to (trivpat, patexp) pairs (the environment component of an injection
or projection closure is coded in the representation choices for the constructors). When a
known template occurs in a pattern, we inline expand it. Say that C is bound to (tppe)
and we have the pattern p. We symbolically apply tp to p. This yields a substitution
on the variables of tp (which are the same as the variables occurring in pe). Applying the
substitution to pe yields a new pattern, which replaces C p.

For a functor parameterized by a structure with constructors, there are two implemen-
tation issues: what is the representation of the abstract constructors and how are they used
in patterns. To handle the first question, we use implicit structure members for the injec-
tion and projection functions. Note that these only need to be added when the structure is
made abstract (i.e., by functor application), and can be generated as part of signature thin-
ning. The injection function is an ordinary function, while the projection is a function that
returns either the sub-values or FAIL. When building a decision tree, the compiler treats
abstract templates as ordinary constructors, which allows merging of matches against them.
A test against an abstract constructor is a call to the projection function. Of course, the
use of functions to implement the construction and destruction associated with abstract
constructors may result in a certain degradation of performance. Of particular concern is
the loss of merging when two abstract constructors have common structure. (For example,

9

the templates LAMBDA and AP defined earlier share the structure TERM(OP -, _). Any
value not matching this pattern cannot possibly match either of them). Other costs include
the loss of inline tests and the replacement of branch tables with trees of conditionals. Note
that these costs are incurred only when constructors are actually abstract, that is, when
functors are used. In particular no penalty is incurred when structures, which have trans-
parent signatures, are used rather than functors. Moreover if macro expansion were used in
the implementation of functor application (a reasonable thing to do when compiling a pro-
duction version of a system) functors would reduce to structures and abstract constructors
would become concrete.

Our implementation of abstract constructors can also be applied to solve an outstand-
ing problem with datatype representation and abstraction. In some implementations of
SML [App90], the representation of the datatype defined by datatype d = A I B of t,
depends on the representation of t. If the representation of t is appropriate, it is possible to
represent the value B exp with the representation of ezp. Problems arise when t is abstract,
since its representation is known at the definition of d but not elsewhere. Extending our
technique to cover abstract datatype constructors that fall into the danger zone solves this
problem. Although our solution to the problem incurs a performance penalty, a less speedy
program is better than one that does not run correctly.

9 Related work

Wadler's view mechanism ([Wad87]) shares the objective of allowing data abstraction and
pattern matching to cohabit. Views were once part of the Haskell definition ([HW88J),
but were dropped because of technical difficulties. Conceptually, a view of a type T, is a
datatype T' together with a pair of mappings between T and T'. Ostensibly these maps
are isomorphisms, but since they are defined by the user, there is no assurance that the
types are truly isomorphic. Views and templates differ in several significant ways. The
principal difference is that Wadler's views define maps between concrete representations,
whereas templates provide abstract views of a single representation. Because views define
different types, a given pattern match can involve only one view. In addition, once a view
is defined, it is not possible to add additional constructors (even if other representations
admit additional objects). Templates, on the other hand, do not suffer these restrictions.
The implementation of views uses the user defined maps to convert between representations;
thus, pattern matching can incur arbitrarily large performance penalties2 . In our scheme,
most uses of templates incur no run-time cost, and even in the worst case they add only a
constant overhead to pattern matching. Our presentation of the semantics of templates is
more detailed than that of views given in (Wad87]; furthermore, we address the semantic
and implementation issues related to separate compilation and parameterized modules.

The CAML system ((WAL+]) provides a mechanism for defining new concrete syntax,
by specifying a grammar to map quoted phrases to the internal representation of programs.
This mechanism could be used to implement our template mechanism, although the imple-

2 1n fact, there is no guarantee that the maps even terminate.

10

mentation details appear non-trivial. Recently, a quotation mechanism has been proposed
for SML, which allows terms in some object language to be included in expressions ([SLi91]).
This provides some of the syntactic convenience of our mechanism, but it provides no help
for pattern matching against terms of the object language.

References

[App90] Andrew W. Appel. A runtime system. Lisp and Symbolic Computation, 4(3):343-
380, November 1990.

[AR] William Aitken and John H. Reppy. Abstract data constructors - symbolic
constants for Standard ML. Cornell University Technical Report (in preperation).

[HW88] Paul Hudak and Philip Wadler. Report on the functional programming language
haskell (draft proposed standard). Technical Report YALEU/DCS/RR-666, Yale
University, Department of Computer Science, December 1988.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, Englewood Cliffs, N.J., 2nd edition, 1988.

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. The MIT Press, Cam-
bridge, Mass, 1991.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT
Press, Cambridge, Mass, 1990.

[Sli91] Conrad Slind. Varieties of object language embedding in standard ML, 1991.
unpublished.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with data abstrac-
tion. In Conference Record of the 14th Annual ACM Symposium on Principles of
Programming Languages, pages 307-313, January 1987.

[WAL+] Pierre Weis, Maria-Virginia Aponte, Alain Laville, Michel Mauny, and Asc~inder
Su~irez. The CAML Reference Manual (Version 2.6). Projet Formel, INRIA-ENS.

11

Efficient representation of extensible records

Didier Rimy
INRIA-Rocquencourt*

April 10, 1992

Abstract of fields plus one. Only the polymorphic creation of
records has to pay more in time and memory.

We describe a way of representing polymorphic extensi- In section 1, the specificity of records as data prod-
ble records in statically typed programming languages uct structures serves as an introduction to the condi-
that optimizes memory allocation, access and creation, tions for which our representation will work in practice.
rather than polymorphic extension. The method is described in detail in section 2 as the

encoding of partial functions from labels to values with

Introduction finite domains. In section 3 we extend the method to
records with defaults. These are total functions from

Type systems for records have been studied extensively labels to values that are constant almost everywhere.
in recent years. New operations on records have been As an application we get safe standard records in an
proposed such as polymorphic extension that builds a untyped language. In section 4, we discuss how to han-
record from an older one without knowing its fields. dIe pathological cases in order to prevent bad behavior.

Such operations are very powerful, and were not always
provided as primitive constructs in untyped languages. 1 Records and their specificity

In comparison to the numerous results on the type
theory of records, there has been less interest in their Records are product data structures. Each piece of in-
compilation. Many languages still have monomorphic formation is stored with a key, more commonly called a
operations on records, e.g. most implementations of label, that is used to retrieve the information. There is
ML [HMT90, Wei89, Ler90I. Others, that have more at most one value associated to a label. By field a pair
powerful records, use association list techniques, even- noted a - v of a label a and a value v. Such data struc-
tually improved by caching. tures are of common use in computer science. However

Safe untyped languages require that the presence our definition of records is too vague for choosing a good
of fields is checked before access. The use of associa- representation of records. It is necessary to know the
tion lists interleaves dynamic checking with access to average and the maximum size of these structures, to
fields. In strongly typed languages, the presence of know whether they are created incrementally, the fre-
fields is statically checked. Thus the representation of quency of the different operations and which ones are
records by association lists performs superfluous run- privileged. It is obvious that different programs will
time checks, and it seems that cheaper solutions could give different answers. These questions can only be an-
be found. swered in general, or the answers that we give below

We propose a representation of records based on a can also be taken as assumptions for which our repre-
simple perfect-hash coding of fields that allows access sentation of records will work in practice.
in constant time with only a few machine instructions Records are provided with three operations. Cre-
which can be dropped to a single instruction whenever ation builds a record with a finite number of labels to-
the set of fields of the record is statically known. Cre- gether with values associated to these labels. Ezxension
ation can be performed in time proportional to the size takes a record and builds a new one that has all fields
of the record, and allocates a vector of size the number of the first one plus a finite number of new fields. Ac-

"*Author's address: INRIA, B.P. 105, F-78153 Le Chesnay cess takes a record and a label and returns the value
Cedex. Email: Didier.Ilesy~inria.fr associated to that label. It fails if the label is not in the

domain of the record.
Records have a relatively small number of labels. At

most a couple of hundred, on average less than ten. Non
incremental creation and access are both very frequent
and are privileged. There are usually many records
with the same domain. Space and time are equally

12

important. is statically known can be optimized by partially evalu-
The simplest representation of records by associa- ating their header. The access become a single indirect

tion lists is good for very small records but it makes ac- read to fetch the value of the record on that field. The
cess to large records too slow. Balance trees would have creation is always in that case, since it builds a record
better performances for large records but the overhead with n fields from nothing. The header can be com-
has also to be paid for small records; they also require puted statically and shared between all records built
too much memory. General hashed tables will also have by the same function. The cost is reduced to allocat-
an overhead that is not acceptable for small records. ing and filling n + 1 fields of a vector. More generally,

headers can be shared between all records that have the
same domain by keeping all existing headers in a table.

2 Extensible records with poly- Polymorphic access and polymorphic extension

morphic access must use the headers. For sake of simplicity, we con-
sider that labels are integers. The parser and the printer

In this section we consider records as partial functions would deal with the isomorphism between integers and
from labels to values, with finite domains. The problem names in a real language.
is to find a representation for such functions, such that Finding a good representation of h seems as diffi-
under the assumptions of the above section, the oper- cult as finding a good representation of r. There are
ations on records can be performed efficiently. By per- two differences, though. Since the header is shared, we
forming, we mean evaluating in general. In particular, are allowed a little more flexibility on the size of H.
this applies to compilation where some of the evaluation Also, h is a function on integers, thus we are allowed to
can be done statically. use arithmetic and logic operation on integers. There

Standard monomorphic operations on non extensi- is no hope of finding a direct representation of h by
ble records should not be penalized by the introduc- arithmetic operations, since its domain is completely
tion of more powerful records. Although it is always arbitrary. At least some mapping between integers has
possible to keep two kinds of records coexisting, the to be an arbitrary map represented by a vector of inte-
new records should replace the older, weaker ones. It gers for instance. A mixed decomposition of the header
should be left to the compiler to recognize that some h is:
record operations are monomorphic and thus can bet- modp)
ter be compiled. Indeed, this will not be possible for all N - [0,p - 1] 1, n]
compilation schema. where (mod p) is injective on the domain of r. Such

A record r is a partial function from labels to values a decomposition is always possible, to the price of a
with a finite domain (a, P-* vi)iE[1,n]. The simplest higher p. In practice the smallest p that works is on
decomposition of this function is average twice the size of n for a few labels and three to

h V Vfour times for larger sets of labels. Since the header is
Labels-h [1, n] Values shared, this is very acceptable.

The interest of this decomposition of h is that it can
ai I) i t * v• be compiled efficiently and coded in a vector H:

The total function v stores the components of the O- p
record, while the the partial function h, called the {- (i-1) j E [1,p]
header, describes how labels are mapped to indices.
This decomposition suggests the representation of r in The partial function r must be extended into a total
a vector R: function on (1,p]. We write it q the unconstrained ex-{ O--H tension of 77.

i --. vi i E [1,n] In too cases below, We will also be interested in

where H represents the function h. two particular extensions of 77 below that we write i

The partial function h needs to be defined at least and i/. The former i is an extension of 77 with values

on the domain of r and it should better be injective on of [1, n], thus it makes r a total function. The later '4

the domain of r too. Any such function would work, extends 17 outside of [1, n], for instance 0, which provides

since v is then defined by a membership test to the domain of r7by testing f for
equality to zero.

(h doam (r)) o r The domain of r must also be coded in H for poly-
morphic extension. All its labels can be listed at the

up to permutation of indexes with identical values, end of H.
If all records are coded such that their headers (the O p

representations may differ provided they implement the I n-.n
same function) only depend on their domains, then 2+j 2 - -(j) j E [O,p- 11
compilation of operations on records whose set of fields 11+ p + i - ai i E [1,n]

13

The access can be optimized whenever the domain of 8 11 23 30 40 60 100
the record, and consequently the header, are statically
known. Such information is expected to befound bythe Pave 4 9 118 1301 86 1132120714001 902 2565
typechecker. This cannot always be the case, however. '

In order to rely on the types to know the domains Pmaz 11 18 29 48 148 206 298 576 1195 3053
of records, the attendances of fields, given by the types

of records, must correspond exactly to their domains. Figure 1: Average header size
This implies that the restriction of a record on a field
modifies its header, since its changes the attendance.
This is one possible semantics for restriction. Another an untyped language: a dynamic type error is raised
one is to take the restriction of fields as a retyping func- when the membership test fails instead of returning the
tion, that is, a function that evahiates as the identity. default.
The choice is between an expensive active restriction
that allows access optimizations or a cheap retyping re-
strictions that forbids them. 4 About efficiency

This section does not consider the case of records with
3 Records with defaults defaults for sake of simplicity, but it can be adapted

very easily to them.
In this section we consider records as partial functions The previous representation of records is very at-
from labels to values, constant almost everywhere. The tractive since it implements linear time access, uses
problem is now to recognize whenever the field does very little memory, keeps the same performance on
not belong to the domain of the record (we mean the monomorphic records as if all records were monomor-
explicitly defined values, here), in which case the de- phic. However we must check the following points.
fault value is returned. The membership test might be First, that the size of the header does not get too large.
expensive in time or in space. Secondly, that the polymorphic extension does not have

There is a cheap solution based on the same tech- too bad performance, even though it is not privileged.
nique as above. In fact, we coded records by total func- Last, that pathological cases can be handled.
tion on labels, and described the domain separately in The computation of the integer p is at the heart of
order to implement the extension of fields. Thus we every question. The problem is given a set of integers
could apply them outside of their domain (but get a D, find a small integer p such that (_ mod n) is injective
value of unpredictable type). on D. The integer p does not need to be minimal, even

Let r be a record. Consider the record r' equal to if computed at compile time, since a larger header might
id ý dom (r). An arbitrary label a is in the domain of r make polymorphic extension more efficient. However,
if and only if it is equal to r'.a. The auxiliary record the minimal p gives a lower bound on the size of the
r' only depends on the domain of r is already be coded header. For instance if D is randomly chosen, and the
in the header H as the domain of r. Remember that i set of labels is large enough in comparison to the size n
is the index in R where the value of label a, is stored. of D, the probability that p disambiguates n integers is
Thus it is the index where ai is in R', which is also in
H at position 2 + p + i, provided i = ;7(ai mod p). P!

We simply shift the indices in R to place the default (p - b)! pf
value at position 1: The formula that gives the average smallest p in func-

0 H tion of n is simple, but figure 1 gives an experimental
I•-• d result on the average p.ve and the largest Pmoz for on

1 + i v i E [1,n] a hundred runs per column.

We compute the application of r to the label a as fol- For small records, 10' runs did not give very differ-
lows. First compute the index i associated to a, that ent maximal p. The dispersion of p is shown by figure 2

is H.(a mod (H.0)). If H.(2 + p + i) is equal to a, then The figures show that under 30 labels, the size of D
the label belongs to the domain of r and the result is does not exceeds, in average, four times the number of

R.(1 + i) otherwise it is the default R.(1). fields, and exceeds very rarely twice the average. For

One must be careful to use the , extension of j7. large records (above 50 fields) the header becomes very
The f1 extension is still possible, but the above mem- large. It is clear that another solution must be applied
bership test must be preceded by a membership test to for large records. Even if one wished to push this limit
the domain of ?1, and in case of failure the default value to a hundred labels, there is always a rank that can
should also be used. be reached in practice (even if it is pathological) for

In fact, the encoding of records with defaults can another representation should be used.
be easily adapted to implement safe classical records in

14

50- which may be very expensive - and at least propor-
40"--.." tional to the size of the record it extends. The time for

40•...'- : . . computing the header now becomes important. There
30- .are different cases (we exclude large size records, that

3"-." "should be represented otherwise):
20_

* There is no need to compute a new p,
10_ t:

* The average case for computing a new p,

o0 '100 200 '400 9 The worse cases for computing a new p.

Figure 2: Dispersion of the header size In the average case, computing a new header means
that 3 different p's must be probed per extension, since
headers are in average 3 times the size of n. The opti-

Since, we cannot avoid a mixed representation, if mistic unit cost U is the one of a loop that contains at
we want to handle large size records in order to rep- least one vector write and one modulo instruction. The
resent them with reasonable size headers, we use tags cost for a probe is pU, since the failure is probable to
to distinguish between the two representations. For in- happen at the end. Thus the average cost for creating
stance, negative integers can be used as tags for an a new header is 3pU plus two other pU for filling the
alternate representations. There are many possibilities header.
for the alternate representations, and since these are However, a record with a very compact header may
pathological cases, in the sense that they do not meet be extended with a label that will make the header get
the requirement that we set in section 1, we do not care closer to its average size. Then about nU probes may
much about the efficiency of the alternate representa- be needed, making the cost for the new header increase
tion. We propose, two possible solutions that fit well to pnU.
with the regular representation. On the other hand, it is very probable that the ex-

The first solution is whenever a and b are equal to j tended header already exists or is trivial. If the label
modulo p to assign i7(j) with an integer -q such that q a of the extended field is taken at random, there is a
is in [2, p] and modulo q distinguishes a and b and with probability of (p - n)/p that the n + 1 fields will still be
values that are not in the image of 77. disambiguated by p. In that case, the cost for creating

The second solution replaces perfect hashing by a new header is the same as copying the old one plus
hashing with linear probing ([Sed88], Chapter 16). The modifying a few fields pU.
header is H is The creation of a new header may be avoided most

0 -- p of the time since it is very probable that it has already
I -n be created. This requires that all existing headers are
2 + j .- il(j) j E [0,p - 1] stored in a dictionary. This will save both space and
1 + p+ i 2 ai i E [1,ni time. The keys in the dictionary are the domains of
2 + n +p+ j --. a,(i) j E [0,p - 11 headers that can be kept ordered in H, so that equal-

ity tests are not too expensive, and the whole cost of
for labels that do not conflict. When 2+n+p+(aimodp) searching would be lower than the minimal cost of ex-
is already occupied, the label a, is placed at the smallest tension.
free position after, say j, and 77(j) is filled with i. Active restriction of fields can be implementing

The first method still gives access in linear time, along the same ideas. The header is looked up in the
but headers are more difficult to compute. The may be table. If it does not exist, then the new header need
much faster on ave-age, but require larger headers. In not be the smallest one, provided that it is of reason-
both cases there is a lot of freedom on how to chose p, able size. This avoids the expensive cost of finding the
according to how many conflicts are accepted. Letting smallest integer modulo which all elements of the do-
p be about 3 times the size of r may avoid searching main as distinguished.
for optima while limiting the number of clashes. The
first method is more flexible, since a conflict for one
label does not need to double the size of the header or 5 Other compilation schemas
recompute another header: it simply uses the holes of
the actual header. Then, it can also be used even for There are three different ideas in the above representa-
average size records in some cases in order to compile tion of records
more efficient extension. 1. The value of fields and the position of fields are

The efficiency of polymorphic extension has not represented separately. The header that describes
been considered yet, since it was not a privileged op- the later is shared between all records having the
eration. It has to dynamically compute a new header,

15

same set of fields, two records with the same do- Technical Report 117, INRIA-Rocquencourt,
main always have the same fields at the same po- 1990.
sition. [Sed88] Robert Sedgewick. Algorithms. Computer

2. The header can be represented by a modulo fol- Science. Addison-Wesley, second edition edi-
lowed by a projection. tion, 1988.

3. Different representation of the headers can live [Wei89] Pierre Weis. The CAML Reference Manual.
together. BP 105, F-78 153 Le Chesnay Cedex, France,

1989.
The first point is crucial in our representation. Any rep-

resentation of records that does not originally respect
this point can still be used to implement headers, then
values can be stored in vectors as above. Sharing of
headers will save the large amount of space required by
association lists or balanced trees.

The representation of the header itself is not im-
portant. We described one possibility that is very con-
venient for small and medium size records. But many
other representations are possible. We choose to repre-
sent the header as a structure that is interpreted both
by extension and access. It could also be a closure for
the access part, together with a description of the do-
main that is needed for the extension. This is the tag
vs closure duality.

If the extension and the restriction of fields are
themselves closed with the header, records could really
be viewed as objects with two methods for access and
extension.

Conclusion
We have presented a way of representing records with
or without defaults that allows efficient access and cre-
ation. Only the more powerful features such as poly-
morphic extension, or true restriction of fields have to
pay a higher price.

Our representation of record with defaults can be
used to implement safe access in an untyped language.

An orthogonal application could be the representa-
tion of feature terms that are very related to records.

Thanks

These ideas originate in discussions with Xavier Leroy.
They have been mentioned for the first time in [Ler90]
and tested in the untyped version of Zinc, the ancestor
of Caml-Light.

References
[HMT90] Robert Harper, Robin Milner, and Mads

Tofte. The definition of Standard ML. The
MIT Press, 1990.

[Ler90] Xavier Leroy. The ZINC experiment: an eco-
nomical implementation of the ML language.

16

A General and Practical Approach to Concrete Syntax Objects within

MLt

Mikael Pettersson and Peter Fritzson

Department of Computer and Information Science, Link6ping University

S-58183 Link6ping, Sweden

Email: mpe@ida.liu.se, paf@ida.liu.se

Abstract: In this paper we present an approach to concrete syntax object within ML, which is both general

and efficiently implementable. These language enhancements add BNF rules for abstract syntax declara-

tions and "semantic brackets" [I ... 1] with inline concrete syntax and pattern matching for readability and

conciseness. This approach has several improvements integrated together which either do not appear in

previous works, or appear in forms which are very restrictive or have very inefficient implementations. Our

improvements are: (1) inline concrete syntax within "semantic brackets" has been integrated both with the

ML type system and the ML scope rules, (2) concrete syntax can appear both as syntactic patterns for pat-

tern matching and as syntactic expressions for building objects, (3) patterns can be nested to arbitrary depth,

(4) concrete syntax and ML objects can be mixed; so called anti-quotations are supported directly. (5) pat-

terns and parts of patterns can be augmented with type information, (6) efficient integration with a general

incremental LR(I) parsing mechanism.

These extensions have been efficiently implemented within our DML system. DML, the Denotational

Meta-Language, is a dialect of Standard ML with extension aimed at making it (even more) useful for

implementing denotational specifications of programming languages.

1. Introduction

Functional languages generally have some facilities for defining and computing with inductively defined

data types. Unfortunately, only the simplest prefix syntax is available for objects of these types. It is gener-

ally true for problem domains where data objects with syntactic structure are specified and later accessed

and manipulated, i.e. when a meta-language computes with an object-language, that the implementation

tends to be cluttered with prefix constructors and/or access functions for abstract syntax and other interme-

diate forms. Typical examples are conventional compilers and implementations of denotational specifica-

tions of programming language semantics. If context-free grammatical methods can be used to specify this

structure, then a set of language extensions based on inline concrete syntax, e.g. as proposed in this paper,

can lead to more compact and readable code. The language extensions described in this paper, implemented

within our DML system, have so far been used primarily in compiler generation from denotational seman-

tics specifications. An overview of the system is given in [PF92], while this paper concentrates on the

t This work was aupported by the Swedish National Board for Industria and Technical Development (NUTEK).

17

implementation details of the concrete syntax extensions.

2. Related Work

The work by Aasa et al [APS88] describes an approach to inline syntax, which in its current form only
applies to sequences of characters and is so inefficient that it is not practically usable. Its inefficiency is
mainly due to its use of Earley's [Earley70] algorithm which repeatedly recomputes parsing automatons
which are reused in our method. An implementation has been done, hidden within the LML (Lazy ML)
system, but it is not used by LML itself (Augustsson9 11.

Lee [Lee89] has a very simple but restrictive approach to implementing in-line syntax within semantic
brackets in the context of denotational semantics specifications. A syntactic pattern is converted to a string
by simply concatenating everything between the semantic brackets. A similar conversion occurs for each
production in the syntax declaration. Patterns in semantic equations are then resolved by searching linearly
for matching strings from the set of productions. This disallows patterns with different variable names but
similar structure, and patterns with nested structure. These restrictions are not present in the DML system.

The Refine language [Refine9O] contains perhaps the most practical and complete implementation of inline
concrete syntax before our work, but still lacks integration with a general type inference mechanism and
often has problems with parsing conflicts due to its use of standard LALR(l) techniques.

The CAML system from INRIA [Weis et al 89] also includes a facility that can be used to provide concrete
syntax for datatypes. In CAML, a graxxmmar declaration consists of a set of productions, each associated
with an ML expression that builds the appropriate resulting term. The grammar is sent to Yacc, and the
parsing tables are read back in and mapped to a set of parsing functions. These functions can be applied to
strings, files or the current input. When parsing, the input is pre-tokenized by the ML system into a stream
of identifiers, strings and numerical constants. It is possible to mix concrete syntax and ML expressions (so
called anti-quotations) since the system's parser for ML expression is visible as the function
parse_camiexpr O, and can be called from the user's code in the grammar rules. The special syntax
"<<... >> is used to delimit parts of an ML program that should be parsed according to user-defined gram-
mar. There is a notion of the current grammar which is used by default; <:grammar:non-
terminal< ... >> can be used to explicitly direct the focus to a particular grammar and (optionally) a partic-
ular start symbol.

The system appears to be most suitable for providing a simple means to prototype parsers for the concrete

syntax of programs when developing compilers or interpreters. Since it runs entirely before the type-
inference process, no ambiguities can be allowed, even if type constraints would resolve them. Overall, the
system has a more "programmatic" than declarative feel. While our approach doesn't support the building
of user-level parsing functions, we think it is better integrated with the ML language, especially since it uses
type information in addition to context-free syntax, and from the start supports anti-quotations without the
need for extra programming.

18

,. , , i | I I I I I I II II

3. The Use of Syntax Definitions in Denotational Semantics

A common way to specify the type of syntax trees in texts on denotational semantics is to use BNF rules
like this:

C : Con
I : Ide

E : Exp

E ::= C J I I E + E

and then refer to syntax tree objects by writing their syntax between "semantic brackets":

eval [C I env = C
eval [I] env = env I
eval [E, + E2] env = (eval E, env) + (eval E2 env)

The definition-by-syntax facility is really just a shorthand, eliminating the need to explicitly deal with
Cartesian products, disjoint unions and their appropriate injections, projections and tag tests. In DML we
take the same view: syntactically defined types provide a convenient notation for ordinary types defined
with datatype declarations. The example could in DML be expressed as follows:

type Con .
type Ide ...

syntax Exp = Con I Ide I Exp "+" Exp

fun eval [I c I] env = c

I eval (I i I) env = env i

I eval HI el "+" e2 I] = (eval el env) + (eval e2 env)

Translating it to vanilla SML might result in:

datatype exp = ConExp of Con

I IdeExp of Ide

I AddExp of Exp * Exp

fun eval (ConExp c) env = c

I eval (IdeExp i) env = env i

I eval (AddExp(el, e2)) env (eval el env) + (eval e2 env)

The transformation is non-trivial in general. In this example, the "pure" SML version wasn't too ue''. r1ut
more complex types and patterns (especially nested ones) are clearly more conveniently handled using
grammar rules. There are two basic reasons for preferring syntactic type definitions. First, we do not have to
cast all expressions and patterns into the prefix or binary infix syntax of SML. Instead we can use (almost)
any meaningful notation we wish. Second, grammars allow us to make "unit productions" (type conver-
sions) implicit. Consider:

19

(* DML version *)

fun simplify [I e "+" 0 I] - e

(* SHL version *"

fun simplify (AddExp(e, ConExp(IntCon 0))) = e
I . . .

Here DML enables us to mak. the mapping from integer constants to Exp:s implicit, whereas SML wants

us to spell out all the gory details.

4. The implementation of DML's syntactic objects

This section describes in detail how the extensions for syntactic objects are implemented. First the facility
itself is preseried, and an example is given to show that syntax alone cannot be used to resolve syntactic
objects; types are needed as well. Then the compiling strategy is outlined, followed by detailed descriptions
on how the pseudo-parallel LR(O) automatons used here are defined and implemented.

4.1 Grammar of the DML syntax extensions

Table I contains the grammar for the DML syntax e. :ensions in the same style as the Standard ML defini-

tion [HMTvfO]. We use string to denote the class of all string constants, whereas the definition of Standard
ML conflates all constants to the class scon. <thing> means that thing is optional.

Table 1: Grammar of the DML extensions for syntactic objects

dec syntax synbind <withtype typbind>

synbind tyvarseq tycon = srules <and synbind>

srules := <srude> <1 srules>

srule string <srule>

t y <srule>

atexp ::= [I <synexp> I]

synexp string <synexp>

I ateip <synexp>

atpat [I <synpar> 11
synpat string <synpat>

I atpat <synpat>

4.2 Syntactic ambiguities

Purely syntactic preprocessing is often not enough to determine the constructor form of a syntactic expres-
sion or pattern. Syntactically ambiguous patterns are common in denotational semantics specifications.

20

There, implicitly-typed variables are used to disambiguate them.

Syntactic Domains:

N E Nml (numerals)

I E Ide (identifiers)

E E Exp (expressions)

Abstract Syntax:

E ::= N I I El + E2

E Exp --+ Env - Int

N Nml -- Int

E[NI]p = N[N]

E[Ip = P11
E[Ej + E 2]p = E[EI + E[E 2 B

Here the implicit typing of N and I act to disambiguate the first two patterns. In this work, we wanted for

syntactic patterns to behave as much as possible like ordinary SML patterns without having to introduce
additional declarations or limit the way patterns may be formed (as in Lee's MESS system).

DML would in the first equation find that the type for N had been constrained to be a numeral, and in the
second equation that I had to be an identifier. For this example this is enough to completely resolve the
apparent ambiguities. In those cases where the implicit type constraints aren't enough, the ordinary SML
par.ty construct can be used to explicitly add the needed constraints (much like how overloaded variables
sometimes need this). Note also that this problem is largely eliminated with the use of "noise" keywords in
syntax productions.

4.3 General Implementation Strategy

1. syntax is seen as a grammatical alternative to ordinary datatype declarations. In the same vain,
we see syntactic expressions and patterns as alternatives to ordinary expressions and patterns built
using constructor applications.

2. Every syntax declaration is implicitly transformed to a a datatype declaration, derived as fol-

lows:
Given a production rule srule, its constructor name is built by appending the name of the non-terminal
(the tycon), a string "::="% and the names of the items in the right-hand side. The name of a terminal
is itself, the name of a type is "_". For the same rule srule, the arity of the constructor is determined
by building a tuple type ty of the embedded types (not the terminals) in the right-hand side. If ty is
the empty tuple type, then the constructor is a constant, otherwise it is a function with domain ty. For
example:

syntax Stmt :: "if" Exp "the,;' "else" Stmt
"skip"

21

has the following corresponding datatype declaration:

datatype Stmt = "Stmt::=ifthenelse_" of Exp*Stmt*Stmt

I "Stmt::=skip"

Just as for datatype declarations, it is an error for a synbind to bind the same tycon or (gener-

ated) constructor more than once.

3. Occurrences of syntactic objects are translated to ordinary objects (expressions or patterns) built using

explicit constructor applications. For every syntax declaration, its productions are added to an

incrementally-built pseudo-parallel LR(O) parser[li. Each syntactic object is first parsed by the

pseudo-parallel LR(O) automaton which results in a set of possible parse trees. When all surrounding

type constraints are known (at the end of the type-checking pass) only those trees that are consistent

with later type assumptions are considered. If only one such tree remains, then that is taken as the

meaning of the syntactic object.

4. Given that syntax declarations has had their corresponding datatype declarations determined,

and that all synexps and synpats has been rewritten to ordinary expressions and patterns. we see that

no extra constructs remain for the code generator. The run-time costs of these syntactic constructs is

therefore the same as if ordinary datatypes had been used.

4.4 Resolving Syntactic Objects

This section explains how syntactic objects are parsed and rewritten to ordinary SML constructs. This pro-

cess is integrated with the ordinary type checking process since the two are interdependent.

The static context C is extended with a grammatical environment GrmEnv. The idea is that a grammar is a

finite mapping from constructed types (ConsTypes) to finite sets of productions, where each production is

a sequence of terminals (string constants) and non-terminals (types). Grammatical environments follow the

same scope rules as the type environments from datatype declarations.

GrmEnv = Consl¶pe -4 setof(Prod)

Prod = Token*

Token = String u Type

4.4.1 LR(O) construction

Given a context C, an LR(O) parser for the grammar environment in C is constructed as follows. First the

LR(O) sets of items are generated for the grammar in C, where every bound ConsType is a valid start
"symbol". This is achieved by introducing a dummy start symbol S', and adding the production S'-4ty, for

every bound ConsType ty. Non-grammatical types are effectively treated as terminals.

I II These machines have the recognizing power of LR(1).

22

Then the transitions of the parser are defined by the following rules, which are based on the standard ones in
[HU79][2]. Note that the rules do not disallow shift/reduce or reduce/reduce conflicts. We define a parser
configuration as a 4-ruple (pstk, astk, a; input). This is just the normal LR-parsing configuration extended
with a result stack and a type substitution.

* pstk is a stack of state numbers (the usual parse stack)

0 astk is a stack of abstract syntax trees (the "result" stack)

0 ais a finite substitution from type variables to types

* input is the remaining sequence of input tokens, terminated by the special terminal $. Each token is
either a terminal string, or a pair (ry,x) where x is an ML syntax object (an Exp or a Pat), and ty is its

type.

INIT: ([qo], [1, 0, input)

Init is the initial configuration, where qo is the start state of the automaton.

ACCEPT: ([q, q0], [ast, a;, [$1)
Accept is an accepting configuration if q contains a complete item S'-->ty*. The result is
ast.

SHIFT: (q::qs, astk, a, str::input) =ý (q' ::q::qs, astk, a, input)
Shift if there is a transition labeled by the terminal str from q to q'.

GOTO: (q::qs, astk, a, (tyzx)::input) => (q'::q::qs, LEAF(d'(ry),x)::astk, a", input)
Goto if there is a transition labeled by some type ty' from q to q', Unify(o(ty),a(ty'))
succeeds with most general unifier a', and a" is the composition of aand a'.

REDUCE: (ql:: ... ::qk::qs, astl :: .- ::ast,::astk, a, input)

=> (q'::qs, NODE(a(ty),con,[al, -.. , a,])::astk, a, input)
Reduce if ql contains a complete item ty---prod', length(prod)=k, the number of types in
prod (its arity) is n (n<_.k), and con is the name of the constructor for this production.

The resulting parse trees are described by the following type:

datatype 'a Ast = LEAF of Type * 'a
I NODE of Type * Con * 'a Ast list

Leaf nodes correspond to inserted ML objects (and-quotations), while internal nodes correspond to the
application of some (syntax) constructor to a sequence of sub-trees. Each node is also tagged with its type.
The type parameter ' a is the compiler's type of the leaf ML objects, corresponding to expressions or pat-

terns.

4.4.2 Modifications to the Basic Type-Checker

The DML type-checker consists of two major components: the ordinary type-checker for the SML subset,
and the new combined parser/type-checker for syntactic objects. The type-checker for the SML subset is
implemented by combining the general structure and rules of the formal definition of Standard ML

[21 Actually, what we are constmcting is a viable-prefix recognizing NFA for the LR(O) items.

23

[HMT90], and an imperative implementation of type unification and treatment of polymorphic types in
[CardeUi87]. It is organized in two passes: Pass I is the ordinary top-down traversal which maintains type
environments and checks type compatibility by unification. Occurrences of flexible record patterns and
overloaded variables are remembered in a separate set of cleanup actions, since they in general aren't fully
determined at that point in the traversal. Pass 2 finally iterates through the set and checks that all flexible
record patterns and overloaded variables have been fully determined by type assumptions made later in Pass
1.

To deal with syntactic objects, the following extensions were made:

Pass I calls the syntax parser every time a syntactic object is encountered. If the resulting parse forest is
ambiguous, then the occurrence is remembered in the set of cleanup actions and the syntactic object is
assumed to have an unconstrained type r. Otherwise, the unambiguous result is patched into the ML syntax
tree directly and its type is used as the type of the syntactic object.

Pass 2 tries to disambiguate remembered parse forests by a filtering process: any parse tree whose type is
inconsistent with type assumptions made later in Pass 1 is removed. If only one tree remains, it is patched
into the ML syntax tree. Otherwise, there is an error (ambiguity or inconsistency).

4.4.3 Incremental generation of the automatons

Since constructing the LR(O) automaton is a costly process, we do not want to waste time by redoing this
each and every time a syntactic object needs to be parsed. The grammar environment in the static context is
therefore accompanied by a cached, partially-built automaton that exactly mirrors the set of productions that
currently are in the grammar. Scope changes and declarations that modify the grammar also update the
automaton.

In [HKR89] a simple algorithm for incrementally updating the LR(O) automaton is given. Suppose that we
are using the graph representation of the viable-prefix recognizing DFA. The idea is that each state is repre-
sented by its set of kernel items (see [ASU861), the set of reductions, the sets of possible goto and shift tran-
sitions, and a "dirty" flag. Initially, only the start state exists, and it is "dirty". When the parser executes
and wants to examine the transitions from a particular state, it first checks the dirty-flag and if set, computes
the closure of the state. This in turn may cause new initial "dirty" states to be created, or links to be made
to existing states.

The incrementality here means that changes to the grammar only need to do minor adjustments to the
cached automaton. It is not until syntactic objects are being used that the real generation work begins. Once
completed, the automaton is reused until further changes to the grammar causes new incremental updates.

4.4.4 Pseudo-parallel LR(O) parsing

It is generally believed that LR(l) or some of its approximations is needed to build deterministic parsers for
standard programming languages. Unfortunately, LR(1) automatons are considerably more expensive to
build than LR(O) automatons. A technique known as pseudo-parallel LR parsing was first developed for
natural language processing by Tomita (Tomita85]. It achieves the recognizing power of LR(l) by running
several LR(O) parsers in parallel. The idea is this: suppose that an LR(O) automaton in a certain state finds

24

some shift/reduce or reduce/reduce conflicts. Instead of giving up, it can be cloned, and each copy can be
set off to pursue one of the alternatives. In practise, a single LR-engine maintains a set of parsers synchro-
nized by all being at the same position in the input.

This approach has two advantages. First, the overhead of pseudo-parallel parsing is low enough to be practi-
cally useful when short sentences are involved (within a factor of two compared with LALR(1) on sen-
tences with up to several hundred tokens [Rekers92]). Secondly, the method automatically handles the case
when ambiguous grammars are involved, and the system wants to find all the parse trees rather than a single
unique one.

The DML system uses both the incremental and pseudo-parallel methods. The latter fits nicely with DML's
way of first generating all parse trees, and then removing the type-inconsistent ones. Currently the algo-
rithm is based on [HKR89I which limits grammars to the "finitely ambiguous" context-free grammars
(there must be finitely many parse trees for any given sentence).

4.4.5 LR(O) versus SLR(1) and LALR(I)

Why LR(0)? Would not SLR(I) or LALR(l) be more efficient? Not necessarily. The advantage of LR(O) is
that no lookahead information needs to be computed. The disadvantage is that lookahead could be used to
prune the number of generated parsers, instead of blindly trying all possibilities (in the case of shift/reduce
or reduce/reduce conflicts). However, in (Lankhorst9l] it is reported that SLR(1) and LALR(1) only buy
about 10% in parsing time over LR(O). Note also that lookahead would have to be recomputed in some
cases, as in the example below:

syntax tl = "foo"
and t2 = "(" tl ")" (* FOLLOW(tl) = {")"} *)
let

syntax t3 = "x" tl "x" I "z" (* FOLLOW(tl) = {")", "x"} *)
in

end (* now, FOLLOW(tl) = {")"} again *)

5. Interaction with the ML module system

Syntax declarations have an unfortunate interaction with the module system. Ordinary datatype con-
structors can be accessed either by opening a module, or by using the long identifier syntax <mod-
ule>.<name>. Since there is no way to refer to the constructors of a syntax declaration except by using
syntactic objects, one must open the module in order to bring the constructors and the grammar environment
in scope. An alternative would be to allow the user to explicitly name the constructors, for example:

syntax t = "foo" : Foo

I "bar" : Bar

25

This alternative solution has not been investigated yet.

6. Conclusions

To our knowledge this is the first both general and efficient approach to concrete syntax objects within ML.

An implementation, as presented in this paper, has been done within the DML system. The primary applica-

tions so far has been in denotational language specifications, including a C subset and full Scheme, from
which compilers and interpreters have been generated. Traditional compilers not based on formal semantics

have also been implemented. In all of these cases, the use of syntactic objects (mainly patterns) for instead

of conventional datatype:s was found to make the specifications easier to read and write. Some care

must be taken with highly ambiguous grammars; in these cases some strategically placed explicit type con-

straints always suffice to make the resolution successful. The implementation, although being a prototype,
has been fast enough not to present any problems.

7. References

[APS881 Annika Aasa, Kent Petersson, and Dan Synek. Concrete Syntax for Data Objects in

Functional Languages (Proceedings of the 1988 ACM Conference on LISP and Func-

tional Programming, pp. 96-105, July 1988).

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers Principles, Techniques and Tools (Addi-

son-Wesley, 1986).

[Augustsson9l1 Lennart Augustsson. Private communications. (November 1991).

[Cardelli87] Luca Cardelli. Basic Polymorphic Typechecking (Science of Computer Programming, 8

(1987), North-Holland).

[Earley70] Jay Earley. An Efficient Context-Free Parsing Algorithm (Communications of the ACM,

Vol. 13, No. 2, 1970).

[HKR89] Jan Heering, Paul Klint, and Jan Rekers. Incremental Generation of Parsers (Proceed-
ings SIGPLAN '89 Conference on Programming Language Design and Implementation,

SIGPLAN NOTICES Vol. 24, No. 7, July 1989).

[HMT90] Robert Harper, Robin Milner, and Mads Tofte. The Definition of Standard ML (The MIT
Press, 1990).

[HU791 John E. Hopcroft, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,

and Computation (Addison-Wesley, 1979).

[Lankhorst9l1 M.M. Lankhorst. An empirical comparison of generalized LR tables. (Proceedings of the

workshop on Tomita's Algorithm - Extensions and Applications, University of Twente,

The Netherlands, 1991).

[Lee89] Peter Lee. The Automatic Generation of Realistic Compilers from High-level Semantic

Descriptions (the MIT Press, 1989).

[PF92] Mikael Pettersson and Peter Fritzson. DML - A Meta-Language and System for the Gen-

eration of Practical and Efficient Compilers from Denotational Specifications (Proc. of

26

4th IEEE International Conference on Computer Languages, ICCL'92, 1992).

[Refine90] Refine 3.0 User's Manual. (Reasoning Systems Inc., Palo Alto, CA, USA).

[Rekers92I Jan Rekers. Parser Generation for Interactive Environments (Ph.D. thesis, University of

Amsterdam, The Netherlands, 1992).

[Tomita85] Masuru Tomita. An Efficient Context-free Parsing Algorithm For Natural Languages

(Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

1985).

[Weis et al 89] Pierre Weis et al. The CAML Reference Manual (INRIA Technical Report no. 121, Ver-

sion 2.6, 1989).

27

An optimizing ML to C compiler

Regis Cridlig

Ecole Normale Sup6rieure *

& INRIA-Rocquencourt

Abstract

Since the C language is a machine independent low-level language, it is well-suited
as a portable target language for the implementation of higher-order programming
languages. This paper presents an efficient C code generator for Caml-Light, a variant
of CAML designed at INRIA. Fundamentally, the compilation technique consists of
translating ML code via an intermediate language named Sqil and the runtime system
relies on a new conservative garbage collector. This scheme produces at the same time
excellknt performance and good portability.

1 Introduction

ML is a complicated programming language. Its syntax is complex and its dynamic se-
mantics is related to the semantics of lexical Lisps like Scheme (cf [IEE901). Furthermore
it offers a strong polymorphic type system and a safe module system. Because of its overall
qualities this language has become more and more popular for research and teaching, but
with the emergence of better compilers it could reach a larger audience in industry as well.

At this time there are a few good implementations of ML, but all suffer at least from
one or another drawback: disappointing execution speed, lack of portability or excessive
use of memory.

The existence of a static type system in ML should permit us to compile this language
nearly as efficiently as Pascal (not quite because polymorphism requires all objects to be
the same size). The choice of C [KPt88] as target language allows us to get a portable
compiler easily because C is so widespread and now well standardized; nevertheless this
choice must not cause bad general performance. Using the K2 compilation kit of Nitsan
S6niak and Vincent Delacour, we built a very efficient and machine-independent ML to C
compiler [Cri9l].

In this article we explain our approach to ML compilation, provide a sketch of our
implementation and give some results. We use the word 'global' to mean imported or
exported and its contrary 'local' to mean local within a given module or function.

"Address: Laboratoire d'Informatique de l'fcole Normale Supirieure - 45 rue d'Ulni, 75230 Paris Cedex
05, France. Electronic mail: Regis.CridligOens.fr

28

2 Compiling strategy

We use a new compilation technique, named explicit specialization [Sdn89), to obtain very
good optimization of function calls: the cost of function calls is indeed the bottleneck
inherent to the compilation of all functional languages.

Our compiler reduces the semantic complexity of ML programs, according to some
simple and well-defined steps, to a level acceptable by a compiler with a familiar technology
like a typical C one. As a matter of fact people are accustomed to writing programs that
use mostly the capabilities of classical algorithmic languages such as Pascal. In this case,
the dynamic usage of local functions is limited to the static scope of their definitions,
which fortunately allows us to handle functional values without allocating a closure in the
heap: well-known and efficient techniques (cf [ASU86]) can be used to compile classicz1

algorithmic languages.
Since data is handled in the obvious manner in our translation scheme and is later

optimized sufficiently by modern C compilers, we concentrate our efforts and description
on control flow.

2.1 The intermediate language: Sqil

The specialization techn consists of translating ML programs that use general control
flow constructs into more)ecialized and better compilable forms, the Sqil ones.

The SqiI dialect, kernel of the K2 compilation kit, is a kind of lexical and bivaluedt Lisp
with continuations and functional values restricted to the global environment. Since Sqil
only addresses the efficient compilation of control flow, it is limited to a few elementary
special forms:

"* defun, defvar, progn, let, if, setq, labels and f let are present with the same
meaning as in Common Lisp (cf [Ste84]);

"* (function symbol) yields the functional value of symbol, which must be a global
function. This value can be later used in a computed call with funcall;

"* (the-continuation) yields the calling continuation of the global current function
definition. This continuation can be later invoked by (continue cont value);

"* finally, (block name expressions...) and (return-from name value) build lexical
escapes.

The restriction on functional values and continuations guarantees one important prop-
erty: identity between variables and registers (see [S6n91]), meaning that each local vari-
able of a program can be allocated to a register. Additionally function call is direct by
default thanks to bivaluation; computed calls explicitly use funcall.

We successfully used the K2 compiler written by Nitsan Sdniak, who has developed
original techniques to compile local functions towards C [S$n90]:

* Displacement of continuations propagates calling continuations of functions into the
called functions in order to transform many non-tail calls into tail ones, which can
be compiled using goto.

1'.e. symbols can have a functional value and a non-functional one at the same time, like in Common
Lisp.

29

* Function integration in another function definition allows K2 to compile mutually
tail calls between several functions into ordinary jumps.

The K2 compiler has proved to yield very good C code. Nevertheless Sqil could be directly
compiled to efficient native code as well.

2.2 C as a target language

The Common Lisp compiler AKCL [Sch88] shows that it is realistic to compile Lisp or
ML towards C used as a portable target language. Actually the primary advantages of C
are:

" C is a low-level language, whose compilation captures all previously performed high-
level optimizations well.

" C is highly portable and available on an increasing number of architectures, partly
thanks to the spread of the Unix system.

"* Thirdly, C compilers progress each year, while good assembly code generation by
hand for RISC architectures is becoming very complicated.

However, in some respects, C is not so well-suited as a target language. Here are some
reasons:

" The compiler designer loses full knowledge and mastery about the generated ma-
chine code: for instance, some critical optimizations concerning the function calling
sequence that are performed by some Lisp compilers cannot be carried out any more.
Moreover multiple results can be inefficiently compiled.

" Some specialized machine code instructions cannot be generated by the C compiler,
like arithmetic operations with overflow checks. But this is less relevant for RISC
architectures.

" Moreover, the arrangement of local variables in the C stack or in registers is left
undefined. We cannot therefore use a classical garbage collector because it requires
us to identify precisely all roots that can point to allocated data. Consequently we
shall use a more complicated conservative garbage collector with ambiguous roots.

3 Implementation

3.1 The front-end

Our front-end is much the same as ZINC's one, written by Xavier Leroy [Ler90]. It first
parses the Carol-Light grammar and then infers the types of the expressions using a variant
of Milner's algorithm [Mil78]. The typechecker stores type information about each symbol
in the global environment, which enables us to use the type of global functions during the
code generation pass.

30

3.2 Code generation

3.2.1 Pattern-matching compilation

The pattern-matching compilation pass translates ML pattern-matching into a tree of
Sqil's case selection instructions that is later translated to switch in C. The inherent
backtracking involves the use of Sqil's lexical escape blocks, which generally compile to
goto. This translation exactly follows the algorithm given in [Pey87], which is easy to
implement but not optimal.

3.2.2 From ML abstract syntax tree to Sqil

We need two local environments for each toplevel phrase in this translation step:

1. An environment containing each variable with its access path from root to node in
its defining pattern.

2. A local function environment containing the arity of each function name.

According to the different top nodes of the abstract syntax tree the translation proceeds
in various ways:

"* For the case of an identifier, we must distinguish a local or a global identifier, referring
to a variable or to a function, because Sqil discriminates both kinds of values.

"* For the case of a type constructor, we try to propagate constants, whenever it is
possible thanks to the immutability of ML data types. Unfortunately this cannot be
done with vectors and character strings that are inherently mutable in Cami-Light.

"* The application case is the most complicated, because we want to uncurry most
function calls:

- When applying a local function or a primitive to a number of arguments match-
ing its arity2 , we translate it to a direct application. But if some arguments
are missing, we must add the code to build a partial function (using Sqil's
function form); and if there are too many arguments, we have to compute
additional calls using funcall.

- The handling of global functions differs because the actual arity of an imported
function is not accessible: only its type is known, and gives us its maximal arity.
In order to increase execution speed, we insert several entry points for each
global function, ranging from one argument to the maximum arity deducible
from the function type. Thus a global function application simply calls the
entry point corresponding to the number of available arguments.

- If the functional value of the applicand is to be computed at runtime, we iterate
funcall on each argument, since all functional values, i.e. closures, are of arity
one in our scheme.

e The specialization of let needs the pattern-matching compilation pass and then
distinguishes between variables, functions and recursive functions to be able to use
let, f let and labels Sqil bivaluated forms.

2We define the ority as the number of arguments available when the evaluation of the function can
begin.

31

"* The CAML try ... with exception block is compiled by storing in a global variable
the corresponding continuation, after having saved the old one. This permits us to
raise an exception dynamically just by invoking the last created continuation.

"* The translation of other constructs such as conditional forms or sequential forms is
straightforward.

Finally we must remember to trans'ate global definitions of functions and variables
into defun and defvar Sqil forms.

3.2.3 The globalization pass

Up to this point we have not paid much attention to the fact that continuations and
function values of Sqil are restricted to the toplevel environment. That ensures that these
are simple adresses of either a stack frame or a global function entry.

If this is not the case, we have to globalize the function: a local function f that is
referenced as a functional value must be moved to the toplevel and defined there with an
additional argument representing its environment, i.e. its free variables. Then in general
it is necessary to build a closure each time we need the functional value of f, and send
its current environment together with its argument whenever f is called.

Moreover each free function of f will be either integrated in f if it is only referenced in
or else must be globalized too. So any free variables of these functions must be present

in f's environment too.
If a local function contains the form (the-contiruation), it must be globalized as

well, and additional arguments must be supplied for its free variables.

3.2.4 C code expansion and linking

When compiling Sqil code to C, remember that such optimizations as elimination of tail-
recursive calls, continuation displacement and integration of local functions are performed.
Macros for data handling are expanded too.

The Camil-Light module system is simple but quite natural and is based on interface
files that provide the names and types of all exported global identifiers of a module. It
allows separate compilation between modules and the definition of abstract types such as
polymorphic hashtables. So we have to link all compiled modules (along with the runtime
support) to obtain the executable file.

The standard library is entirely written in ML; it provides C written primitives only
for low-level tasks such as I/O or Unix system calls.

3.3 The runtime system

3.3.1 The selected memory model

All ML objects are uniformly represented by a machine word. Characters, integers, short
reals and some special sum types such as booleans are immediate values whereas all other
objects are statically or dynamically allocated in several words and represented by a
pointer. We discuss below whether pointers and immediate values need to be distin-
guishable.

Closures and environments are simply allocated as a vector in consecutive memory
words. So extending an environment by new variables is not implemented by chaining,

32

but needs to copy the values into a bigger environment vector. Sum types require a small
integer tag for the purpose of discriminating different constructors.

3.3.2 Which is the best garbage collector?

In order to collect memory which is no longer used, we need a garbage collector that can
trace ambiguous roots in the C execution stack. It is possible to use a mark and sweep
algorithm in a BIBOP memory model without any tags in the objects themselves. With
this scheme all fields in an allocated object are ambiguous.

We have tried this scheme and used Boehm's portable collector [BW88] for a while,
but the results were not very good for programs that allocate a great amount of data in
the stack or in the heap. The garbage collector was indeed spending too much time in its
mark function because it considers every word in the stack or in the heap as a potential
pointer.

We think it is much better to distinguish pointers and immediate values with a tag.
First the difference between, say, an integer and a pointer in the heap and even in the
stack is much more immediate. Then one can use a mostly copying algorithm, such as
Delacour's one [Del9l], which is more efficient because it does not scan the whole heap like
a mark and sweep algorithm and because it increases locality by copying and compacting
the structured objects.

Moreover the runtime system can easily offer the user 'generic' functions such as equal
that need to explore the tree structure of the objects, and give these functions a polymor-
phic type.

Our implementation uses a one-bit tag scheme that renders all immediate values even
and all pointers odd. This tag scheme gives better results than the opposite one, since
arithmetic operations are little altered while pointer dereference only needs a small offset,
which is free on many machines.

3.4 Benchmarks

Compiler SML-NJ Cami-Light CeML 1 Zinc-~K2 I
Version 0.75 0.41 without GC with GC

Sieve 4.2 11.6 2.4 1.1 1.2
Solitaire 21.3 124.6 7.4 4.7 4.7

Takeushi 18.7 49.6 3.5 6.1 6.1
Tak w. exceptions 33.0 73.6 77 45.2 45.8
Knuth-Bendix 1.9 8.8 12 2.7 3.1
Boyer 5.6 22.7 n.a. 3.9 4.1
Euclidian division 3.4 20.2 17.5 2.7 3.1

Church integers 5.5 31.3 25.2 3.8 3.8
List summation 24.8 41.4 10.6 6.1 8.3
Integral 34.1 59.7 14.2 5.5 13.3

Figure 1: Comparison among some ML compilers (user times in seconds)

Some benchmarks are listed on figure 1. They were performed on a Decstation 3100
with the R2000 RISC processor. Tests on a Sparc architecture yield similar results.

33

We have chosen three other good compilers to make some comparisons. Tbese are the
well-known SML-NJ native code compiler [AM87], the fast bytecode interpreter Caml-
Light and another ML to C compiler, Emmanuel Chailloux's CeML [Cha9l]. Roughly
speaking, SML-NJ uses a Continuation Passing Style translation scheme with a fast stop
and copy generational garbage collector, and allocates everything on the heap [AppSTl.
Caml-Light uses a similar runtime as ours, but its collector is a non-conservative one with
generations, whereas CeML has a good conservative mark and sweep algorithm, but scans
a special-purpose application stack instead of the C stack and uses a type tag in the objects
themselves.

The first tests - Erathostenes' Sieve, the game of Solitaire and Takeushi's function -
show that the C generated code is at its best when compiling imperative programs. That
was indeed expected! The next two - Tak using exceptions to return each partial result
and the Knuth-Bendix completion algorithm - demonstrate that exception handling is
quite expensive in C, because you generally have to use the library functions setjmp and
longjmp.

Knuth-Bendix completion procedure, Boyer's tautology checker, Euclidian division (ex-
tracted from the Coq proof assistant) and Church integers are very functional programs.
Zinc-,K2's excellent performances with respect to these programs show that with our op-
timizing compilation strategy C code generation can achieve the best performance results
for typical ML programs.

List summation tests list processing whereas Integral tests floating point arithmetic.
Except for this last test, garbage collection is cheap (actually the version without a GC
uses a simple allocation fringe pointer and objects have no tag). The reason for this
overhead is that we cannot 'ag short reals, so we have to box them. An alternative would
be to adopt a more clever boxing mechanism (see [Ler92]).

4 Conclusions

We have demonstrated that C code generation can be very efficient if one succeeds in
making a good use of the control flow instructions present in C, despite its bad exception
handling mechanism. Uncurrying is a critical factor in achieving this, because it eliminates
a lot of redundant partial applications. The use of an appropriate intermediate language
permits us to describe the relevant optimizations easily.

The next step would consist of giving an object its natural C type whenever it is known
statically to have a monomorphic ML type. This would allow the C compiler to handle
the object directly, yielding a better assembly code, and would avoid many useless heap
allocations. We plan to develop chis idea and to add pertinent datatypes to Sqil.

Finally, a garbage collector with ambiguous roots can be (nearly) as efficient as a
conventional one, and a clever runtime tag mechanism does not hamper the overall per-
formance.

5 Acknowledgements and related works

We would like to thank Xavier Leroy for his precious help, Emmanuel Chailloux for some
valuable discussions, and Bruno Monsuez and Alan Mycroft respectively for their remarks
about the first and second draft of this paper.

34

Previous work on the compilation of Lisp to C include the Kyoto Common Lisp (YH88j
and Bartlett's SCHEME-C compiler (Bar89]. A previous attempt to compile ML to C is
reported in [TAL90], but SML2C yields lower-level C programs, for example it does use
an apply-like procedure for function calls instead of the standard C calling mechanism.

References

[AM87] A. Appel and D. MacQueen. A Standard ML compiler. In G. Kahn, editor,
Proceedings of the Conference on Functional Programming and Computer Archi-
tecture. Springer-Verlag, September 1987. LNCS Vol. 274.

[App87] A. Appel. Garbage collection can be faster than stack allocation. Informations
Processing Letters, June 1987.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[Bar89] J. F. Bartlett. SCHEME-•.C: a portable Scheme-to-C compiler. Technical report,
Digital Equipment Corporation, January 1989.

[BW88] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative environment.
Software Practice and Experience, 18(9):807-820, September 1988.

[Cha9l] E. Chailloux. Compilation des langages fonctionnels : CeML un traducteur ML
vers C. Doctorat de l'Universit6 Paris VII, November 1991.

[Cri9l] R. Cridlig. Compilateur optimisant pour le langage ML. Technical report, Ecole
Polytechnique, Palaiseau, France, July 1991.

[Del9l] V. Delacour. Gestion m6moire automatique pour langages de programmation de
haut niveau. Doctorat de l'Universit6 Paris VI, Juin 1991.

[IEE90] IEEE standard for the Scheme programming language. Technical Report 1178,
IEEE Std, 1990.

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Software
Series. Prentice Hall, 1988.

[Ler90] X. Leroy. The ZINC experiment: an economical implementation of the ML lan-
guage. Technical Report 117, INRIA, 1990.

[Ler92] X. Leroy. Unboxed objects and polymorphic typing. POPL, 1992.

[Mi178] R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Science, 17:348-375, 1978.

[Pey87] S. L. Peyton Jones. The Implementation of Functional Programming Languages.
Series in Computer Science. Prentice-Hall International, 1987.

[Sch88] W. Schelter. AKCL: Austin Kyoto Common Lisp. Unpublished(?), 1988.

[S~n89] N. ' .niak. Compilation de Scheme par sp6cialisation explicite. Bigre, 1(65), July
1989.

35

[S4n90] N. Sdniak. Efficient compilation of local functions using C as a back-end. Technical
report, LIX, Ecole Polytechnique, Palaiseau, France, 1990.

[S6n91] N. Siniak. Th6orie et pratique de Sqil, un langage intermddiaire pour la com-
pilation des langages fonctionnels. Doctorat de l'Universit6 Paris VI, October
1991.

[Ste84] G. L. Steele. Common Lisp: the Language. Digital Press, 1984.

[TAL90] D. Tarditi, A. Acharya, and P. Lee. No assembly required: Compiling Standard
ML to C. Technical Report 187, CMU-CS, November 1990.

[YH88] T. Yuasa and M. Hagiya. Kyoto Common Lisp Report. Technical Report, Kyoto
University, Research Institute for Mathematical Sciences, 1988.

36

An Efficient Way of Compiling ML to C

Emmanuel Chailloux
LIENS'- LITPt

Introduction

The ever increasing diffusion of ML. has yet to go beyond the areas of education
and research. To change this situation, two conditions must be satisfied : in their
shared characteristics, ML programs need to become as efficient as imperative programs
without sacrificing security for efficiency and must also be easily interfaceable with other
libraries. I propose a new compilation model for ML, called CeML [6], derived from the
CAML [17] (ML dialect), which translates ML directly into C (understood as a portable
assembler). In fact an abstract machine, inspired from FAM 15], is partially included
in a runtime library. A particular attention has been paid to two points. The first one
is function application which is optimized using an extended notion of functional type.
The second one is the correspondence between basic ML types and basic C types. This
allows ML objects including structured types, represented by pointers, to directly use
the call protocol of C. This correspondence creates some difficulties for the Garbage

Collector, but they vanish thanks to a new Mark&Sweep [121 with ambiguous roots [4],
where basic values are not tagged.

All these implementation features are independent, making no supposition regard-
ing the C compiler because they use another stack for the root set and for the applica-
tion. In this manner, C programs created by CeML are easily interfaceable.

1 CeML Definition

CeML is a ML dialect derived from CAML language [17]. It differs from CAML with re-
gard to its type system (with the introduction of =>, a new functional type constructor)
and its module system.

The main syntactic restriction is the absence of local declaration for type and
exception.

"URA 1327 - Laboratoire d'Informatique de l'tcole Normale Supirieure - 45 rue d'Ulm, 75230
Paris Cedex 05, France. Tel : (33)(1) 44.32.20.55 - Fax : (33)(1) 44.32.32.79 - Electronic mail:
Emmanuel.Chailloux@ens.fr

tURA 248 - Laboratoire d'Informatique Thiorique et Programmation - Institut Blaise Pascal - 4,
place Jussieu - UPMC - 75252 Paris Cedex 05, France. Electronic Mail : ec@litp.ibp.fr

37

1.1 Type system

The A-calculus has no notion of abstraction arity. The following notation : Axy.xy is
just a convenient way of writing Ax.Ay.xy. But in a programming language we need to
have this notion in order to obtain an efficient application. In CeML , we can define
the function arity, bound to a function name, if there is no intermediate evaluation or
local declaration between two (A) (function). For example

let addition = function x -> function y -> x+y;;

becomes a function with two arguments, and its type is int => int => int . This
type is different from int -> int -> int, -> which represents the classical functional
type constructor. To formalize this type system, we give the following typing rules

(App)

C ý- expr 1 : T' --+ r C F- eXpr 2 : T'

C I- expr1 expr2 : r

(TApp)

C-expr:ri => ... =>ir,=>T CF-expri:ri(1 <i<n)

C F- expr expr1 ... expr,, : r

(PApp)

C -expr:r,=> ... =>T=>r CI-expri:ri (1<i<kwithk<n)

C -expr exprl... exprk : rk+l-"*••• -'rfl--* r

(E)

C '- r' => r

C l- T' --+r7

(I)

C - pati : ri expr :r

C F- function pat 1- > . -> function pat,,- > expr :'ri => T2 => ... => rn => r

The great advantage of using a new type constructor to detect curried functions is

the type propagation of the function result. The following function

let add4 x y = let f u v = x+y+u+v in f;;

has this type : int => int => (int => int => int) which indicates the func-
tional arity of the result.

38

remark In ML. user defined polymorphic function can explore the structure of a
polymorphic parameter. In CeML, this rule is also applied to primitives. This is the
reason why the symbol = has the semantic of eq (equality for immediate values or
sharing for structured objects). It is a problem for the programmer but it is more
coherent for the language definition because the ML polymorphism is parametric i.e.
it does not look at the form of the function arguments.

For example. CeML includes a parametric polymorphism, = thus means eq. ie.
describes an equality for immediate values or a sharing for structured values. Effectively
= cannot mean equal because with parametric polymorphism a function does not
explore the structure of a polymorphic parameter [141.

1.2 Module System

The CeML module system is not so powerful as CAML or SML module systems. It
is only a convenient way to make separate compilation. Separate compilation is a
convenient way of dividing programs into different compilation units. A CeML unit
is decomposed into three parts : importation. implementation and exportation. The
importation part describes the sub-graph of dependences at level one. The complete
graph for a program has no cycles. The gray arrow of figure 1 is forbidden.

Figure 1: Dependencies graph

2 C as Intermediate Language

Many compilers consider C as a portable assembler. For example some imperative
languages (f2c , p2c), object languages (C++, Objective C, Eiffel, Modula3), logical
languages (WAMCC) or functional languages (Scheme->C . KCL. SML2C K2C .
Z2K2C). These language references can be found in [6]. I present the main advantages
and inconvenients to use the C language as assembler.

2.1 Advantages and inconveniences

2.1.1 advantages

"* intrinsic : The memory allocation is sufficiently low level that it permits many
kinds of manipulations. Global functions authorize many arguments. and control
structures are powerful (loops, jump function for switch).

"* standard: There is a standard ANSI C. The other C syntax (K&R [10]) is similar.

39

"* efficiency : A great effort is effectuated by hardware manufacturers to obtain
excellent C compilers on new processor architectures (RISC). One of the most
popular benchmarks is the SPECMARK that gives a coefficient of a C compiler
for a processor.

"* tools : Many tools permit the profiling and debugging of the generated C code.

2.1.2 inconveniences

The main inconvenience in using C as an intermediate language is the absence of a
good exception system. For example, C neither detects integer overflow nor C stack
overflow.

2.2 What must be added to C to compile ML?

We need the following extensions to compile CeML to C

"* a Garbage Collector

"* a general application mechanism

"* an exception handling

These different extensions will be introduced into a runtime library that will need
to be linked with C generated programs.

3 Compilation Scheme

The compilation scheme is classical, but its presentation gives a global vision.

a-box C12. *xý m2

..Syn.ac. .I......

Figur.h t2 oaion pases)

SOenbfl- S ton

SC eOunrlfl 1t Oflr

Figure 2: Compilation phases

For each CeML compilation unit (in fact - file with .inl extension), there is a
corresponding C file (figure 2). After this compilation phase, the link phase (figure 3)
creates an executable program from different units and from the runtime library•

40

Figure 3: Link

CeML is actually a CAML program. For the computers supporting CAML it can
be used directly as a command line. For the others, the C files must be generated on
another computer and then be compiled on the host computer.

4 Runtime Library

In terms of efficiency, the runtime library is one of the essential parts of the implemen-
tation. I shall describe the type representation and a new Garbage Collector for the
memory management, the application mechanism and the exception handling.

4.1 memory management

In ML, with a static typechecker. tags are effectively unnecessary [1]. In fact, only
distinguishing information is needed for the summation types in order to distinguish
constructors of a same type and the different kinds of vector. We follow this rule so as
to be close to C basic types.

4.1.1 data type representation

Immediate values and pointers have a 32 bits representation. Others values (accessed
via pointers) are represented in the heap by various structures. In order to distinguish
between them, some type information is required.

Integers and floating point numbers use a word as well. Double precision floating
point numbers are not implemented, but they can be represented as a pointer toward
a four word storage.

4.1.2 Garbage Collector with ambiguous roots

I present a new Mark&Sweep algorithm with ambiguous roots. I describe the data
representation, the partitioning of memory, the setroot and the algorithm used during
the Mark phase to distinguish immediate values and pointers.

partitioning memory The heap is partitioned into chunks (cf. figure 5). Each
chunk contains objects of the same size (to the power of two). There are nbzones sets
of chunks called zone (from 2' to 2 2+nbzones bytes). Objects greater than one chunk are
arranged into several chunks. This partitioning of memory is a variant of the BIBOP

41

...

Figure 4: Data type representation

(Big Bag Of Pages (15]) algorithm. For our implementation, the chunk size is four
kilobytes and nbzones is equal to ten.

-- --.. . ..-

Figure 5: Partitioning memory

free lists Each predefined zone has a list of available elements (cf. figure 6).

Figure 6: Free Lists

42

setroot The setroot is represented by a statically allocated independent stack. This
stack allows for the storage of immediate values or pointers. Sometimes there is a
double use between this stack and the C stack, but this choice is necessary so that
the former stack may be independent of the C stack. This stack is also used for the
general apply mechanism (when a direct call to a C function is not possible because
the argument is a closure, or during a partial application).

initial memory state In the beginning, the heap is empty. Each zone cai, grow
dynamically. The first allocation for a zone is ten chunks. The next allocations are
computed by the growing function. after the Sweep phase. This orientation permits to
control the heap evolution.

allocation There are two kinds of object allocation. The first one is used for small
objects less than onoe chunk in size. This first case has two alternatives. When the
object size is known (for example one cons uses four words) then. if the corresponding
free list is not empty, the allocation is completed, otherwise a GC is invoked. In other
cases the zone to be used has to be computed.
If the object size is greater than a chunk. then the object uses several contiguous chunks.

recovery When a zone is full. one must recover some space. There are two phases,
the first (Mark) marks each object indicated by the setroot and the second (Sweep)
preserves only these objects.

mark For each value inside the setroot, a discriminating algorithm distinguishes
between an immediate value and a pointer. In this last case the structured object is
marked and the process is applied to its structure elements. This algorithm is recursive,
but it does not use the heap. Instead the recursive calls are pushed into the C stack.

sweep For each chunk in use, its corresponding free list is updated by all the un-
marked elements. This algorithm explores all used memory. This is an implementation
which wants to be simple. If the responsible zone which raised the GC is too small
after memory recovery, then new chunks are allocated for this zone.

distinguishing algorithm When the GC examines a memory cell, it decides that
its content should be considered as a pointer and marks the pointed object if the four
following tests succeed :

* is the pointed object in the heap?

o does this address belong to a chunk in use?

o is the pointed object correctly aligned for this chunk?

* is there an object allocated to this address?

Otherwise, the content of the memory cell can be safely considered as an immediate
value.

43

remark It is important to use a GC which displaces no objects, for the correspon-
dence between CeML variables and C variables because otherwise the variable storage
into the CeML stack is more costly (in this latter case two kinds of storage, one for C
values and another for C variables are needed, and the pattern variables must also be
stored in the root set).

4.2 General application mechanism

The general application mechanism uses the CeML stack, in order to push a closure
and arguments. A closure is represented by a pair : (code,environment) where the
code is a C function pointer and the environment a vector. More data is necessary in
the closure, for example the maximum number of arguments (including environment
values). The application expects a closure and i arguments on the top of the stack (cf.
figure 7).

arW U-aW

I I A,.LY (£L 1)

Figure 7: Application using stack

The return value of this application is considered as a C value, and returns to this
evaluation step.

4.2.1 total application

The body evaluation of a function occurs when all its arguments have been passed. We
note Cn a closure with n variables where p are already given. The total applicationPI
begins if there are i = (n - p) new arguments on the top of the stack. Let fn be the
C function associated in the closure, the return value is:

fn(envfl1, env[2],..., env[p], Stack[SP + 11, Stack[SP + 21,..., Stack[SP + i])
p S

There is no closure duplication if all arguments are given.

4.2.2 partial application

In this case the environment portion of the closure is duplicated. The environment
vector increases as in figure 8. For each partial application there is a closure duplication.

44

Sof a , r. 3.< .) -

Figure 8: Closure duplication

4.3 Exceptions

CeML exceptions are considered as constructors, but this type is open.
The runtime library uses the C library setjmp and longjmp. setimp is used for

the try and longjmp for the raise. But it is necessary to add data to the C context
(jmp.buff,) such as the CeML stack pointer. The return value from a raise is stored
inside the stack. This stack pointer must be preserved in the CeML context. All the
different CeML contexts are inside a linked list (EP is the head), as below:

c• Conxten

-- --- - -------,

',.+..........
41. _

Figure 9: Raising an exception

5 Code Generator

I shall explain only the main features of declaration and expression generation.
There is a direct correspondence between CeML variables and C variables. During

the generation phase, the CeML compiler uses four contexts, described below:

"* stack context : is true if the expression must be pushed.

"* variable context: has a variable name if the expression must modify this variable.

"* return context : is true if the expression must be returned by a C function

"* application context : is a list of composed applications.

45

I note that for [expr Istock.return.arable,applylit or I ezpr Jarv.. for the compilation of
expressions in a compilation context. For the declarations, I write [decdvar J(env,.arity)

for a declaration with env as environment and arity as function arity. For example.
a non functional variable has a zero arity, and global variables always have an empty
environment. In all cases, a CeML variable is translated by one or two C variables.

5.1 non functional declarations

C authorizes local variables except for the functions, but closures have a C type defined
as Closure. Then the translation for CeML variables of any type, except =>. is direct.

[let v = e](flo) = {typeC v :

leltruefaI.sev=',O }

where typeC is the corresponding C type for the CeML type.
For the local and non functional declarations, the translation is identical because

the local environment is known at this level.

5.2 Functional declarations

5.2.1 global declarations

In this case, the environment is empty. Then the number of parameters of the corre-
sponding C function is the same as in CeML . In the following example, the f function
has the type : a => 3 => a.

jlet f = e](2) = Closure _Mf;

Ptr ..Ff (_V_., _V.2)
Ptr _V_1
Ptr _V.2.1

push.saf e(_Vl)

push(_V.2):

{ Ptr R;

e I alsfalo.e," R=" ,O
pop-n(2) ;

return(R); }

There are two C variables for each CeML function. One for the closure data struc-
ture and a second for the C function.

The previous example also initializes a C closure (_M.f) with its corresponding C
function pointer (-F.f) and its arity (2), as follows :

[let f = e](0, 2) = -M-f = init-closure("filename"."f",_M-f.-F-f.F2)

push(..Mlf);

46

5.2.2 local declaration

The binding of local function free variables is resolved by adding extra parameters to
the C function, using A-lifting [9]. Each free variable creates a new parameter. but it
is not enough because a free functional variable can contain others free variables. The
free variable set contains all variables not bound under a A or a pattern-matching, and
not defined at the global level. It is necessary to build a dependence variable set (DV)
from the free variable set (FV) as follow :

DVo(vi) = FV(v,)

(k > 0) if DVk(v2) = wj Mhen DVk+ 1(v,) = U DVk(F{wj}) U V{w,}

where F{wj} and V{wj } represent respectively the functional variables and the non-
functional variables, of wj, then DV = DVk+i if DVk+l = DVk.

The great difference between non recursive and recursive declarations comes from
'he initial free variable set.

non recursive declaration For the following CeML sentence (E) : let v, = el and v2 =

e2 ... and v, = e,, in e we obtain :

FV(vi) = FV(ei)

FV(E) U (U FV(vi))U (FV(e) - {vi})
i=1

recursive declaration For the following CeML sentence (E) : let rec v, el and v 2 =

e2 ... and v, = en in e we obtain :

FV(vi) = FV(ei) - vi

n

FV(E) = (U FV(e,) U FV(e)) - {vi}
i=1

translation Then the translation uses the dependence variable set

[let rec v, = el and v2 = e2 in e]arvi = [let rec vi = e J(Dv(v,),.nl)

[let rec V2 = e2 J(DV(v 2),n2)

[el..,.,.,}

All the variables belonging to DV(vl) are translated as extra parameters to the
corresponding C function.

5.3 Application optimization

The general case application is the following

Iexpr, eXpr2 j(s,r.v..) = [expr,]°ue.jo,f"", I expr2 I-ruej.a.,--" a appiy(2)r,.3..

where true in stack position indicates that the expression must be pushed.

47

5.3.1 total application detection

The idea is to compare the function arity and the number of arguments given. If p

arguments are given to f then :

"* if f type is ti- > t 2 then it is the general case.

"* if f type is tj => t 2 => ... => t,+ 1 then there are two sub-cases:

- p < n then f followed by the p arguments are pushed and apply((p + 1) is

called.

- p >= n then f is directly called v;ith the first n arguments. If some argu-

ments remain then another application is effe'tuated.

5.3.2 optimized application

Here we witness the use of C protocol call functions.

[f el ... en, (..r.v) =opt {typeC t1 T 11;

typeC t,, T,,;

[el Ifase..sc,".T1=",D push(TI);

I e.,, JfaIae,fo1se,'T._D,, push(T.-..);
I[e. IT._-.

pop..n(n - 1);

JF f(T,,T2 ,... ,T.)(s,r,l, v) }

5.4 Pattern matching

For all types except integers and summation types, a naive algorithm (sequence of if)

is used. For the integers and the summation types a switch control structure is used
after a reorganization of the pattern matching. Constructors are represented by an
integer. This optimization cannot be used with exceptions which belong to an open

type.

6 Performances

I compare different ML compilers, divided into two families : CAML 117] and SML
[13]. CAML and SML have a very similar core language. We can consider the following
compilers compile the same core language. The CAML compiler translates to the CAM

[7] code which is expanding into native code. CAML-LIGHT [11] translates to a byte
code which is interpreted. SML/NJ [3] uses a CPS [21 model and produces native code.

CeML and SML2C [16] generate C programs, but SML2C is the back end of SML/NJ
and produces low level C programs, in contrast to that CeML generates high level C
code.

48

All these benchmarks have effectively been run on the same machine (DecStation
3100 with a processor MIPS R2000) under the same conditions. All compilers, except
CAML, create executable programs. CAML-LIGHT creates a byte code object but
its loading is rapid. The exportFn function of SML/NJ produces a large executable
program (a core image of approximately two megabytes). CeML and SML2C generate
C programs that are passed on to the C compiler. The respective size of executable
programs are reasonable (under one hundred kilobytes for small CeML programs. and
about four hundred kilobytes for SML2C),

The following benchmarks try to test the differents parts of the ML language. Some
of them are directly inspired from Gabriel's work [8]. Fibonacci. Takeuchi, Integral
and CountStr use basic types as integers, floats and strings. Takeuchi is the curried
form of the famous Takeuchi function. Reverse, SigmaMap, ItList and Sieve test the
construction and access to lists inside functional programs. Church int and DivEuclid
are very functional programs. The former carries out calculations on Church integers.
The latter is the euclidiar, division extracted from the Coq system . TakExcept is
always the Takeuchi function but written with exceptions. KB is the Knuth-Bendix
term rewriting system applied to the group completion. It is very functional and uses
exceptions. SigmaVect and Soli-let work on vectors. Soli-let is the resolution of
the "solitaire game".

In figure 10, all the numbers represent user time on a Unix operating system (given
in seconds). Bold numbers indicate the best results.

DS3100 CAML SML
Test V2-6.1 light CeML NJ 0.66 SML2C What is mainly tested?
Fibonacci 6.7 42.0 2.5 4.7 14.5 integers
Takeuchi 18.5 12.4 0.7 4.6 11.3 function calls (3 args)
Integral 4.0 6.7 1.4 1.4 3.8 floats
CountStr 12.5 1.3 1.9 6.6 10.3 strings
Reverse 14.6 9.6 2.2 2.6 6.4 list processing
SigmaMap 1.0 10.7 0.6 1.1 2.1 list processing, functionals
ItList 4.6 7.2 3.1 2.1 4.0 list processing, functionals
Sieve 7.5 13.2 2.4 4.0 10.7 list processing, functionals
Church int 5.4 10.4 6.4 1.2 4.8 functionals. polymorphism
DivEuclid 29.5 25.4 17.5 3.8 9.8 functionals. polymorphism
TakExcept 24.2 18.3 15.4 7.2 14.5 exceptions
KB 17.8 11.6 12 2.6 7.1 functionals. exceptions
SigmaVect 4.6 29.0 1.3 5.1 9.9 vectors, loops
Soliiet 25.4 151.0 7.4 29.0 * vectors

Figure 10: Experimental results

CeML's excellent performance with respect to imperative programs was expected.
But its results on the functional programs. when they are close to the Lisp style. justify.
a posteriori. its implementation choices. Its less satisfying times on very functional pro-
grams are not really a hindrance because in general. a program is scarcely so functional.

49

Neverless, its performances on exceptions are really a problem if their use becomes a
programming style.

Conclusion

In this paper, I have attempted to demonstrate that functional languages can obtain
the same efficiency as imperative languages for their shared characteristics without
sacrificing security for efficiency which would be a bad deal. This was globally verified.
In many cases, the C program, generated by the CeML compiler, is very similar to the
equivalent handwritten C program.

But at the same time, CeML had to be as efficient as the best ML implementations.
This point is also globally verified. CeML performances compares very favorably with
the best ML implementations. There are however two types of programs where CeML
performances are not highly satisfactory : the very functional programs (close to A-
calculus as in the case of Church integers) and programs which use too much exception
handling (as Takeuchi with exceptions). In the first case, the partial application and
the application of closures given as arguments forbid the application optimization.

In the second case, the exception handling mechanism is above all dependent on
the operating system and does not yield good results on an Unix system. But since
the partial application and the intensive use of exceptions are in fact scarce, they do
not put into question the CeML implementation choices.

In fact, with its more informative typechecker (arity of functions, expressions deco-
rated with their types), the CeML compiler yields excellent optimizations for the total
application and the manipulation of basic values. But theses optimizations are not
always possible. Typically when the application depends on a functional argument,
then its arity is lost for the application optimization. The execution speed then varies
according to the ratio of non-optimized application / optimized application. Its GC,
with ambiguous roots, avoids the tagging of immediate values. The distinguishing algo-
rithm, between an immediate value and a pointer, slows the Garbage Collector down.
but the benefits achieved through the uniform representation of data is. in most cases.
greater than the slowdown.

One could also complain that the CeML stack replicate a part of the C stack. But
for two reasons I think it is better to use an independent stack than only the C stack.
First, it is necessary to be independent from the C implementation. The C stack is not
specified in the C language definition. For this reason, we do not make any supposition
about the C stack. Secondly, the content of the C stack is unknown and can be large.
It is particularly important for the GC which scans this stack to mark objects. CeML
loses time in building this stack but it can save time if many objects are inside the
C stack. Although the GC needs to allocate chunks in good alignment, it accepts
holes inside the heap, and nothing forbids mixed allocation between CeML and other
C libraries.

C programs generated by CeML are readable. This property allows to use C tools
to profile these programs and facilitates the debugging of the compiler.

The reduction in the difference of execution times between C and ML. and the
interface possibilities with others libraries open the door for a more widespread use of
functional languages as everyday programming languages.

50

References

[1] APPEL, A. Runtime Tags Aren't Necessary. Lisp and Symbolic Computation
(1989).

[2] APPEL, A., AND JIM, T. Continuation-passing style, closure-passing style. ACM
on POPL (1989).

[3] APPEL, A., MCQUEEN, D., AND DAVID, B. A standard ml compiler. Functional
Programming Languages and Computer Architecture (1987).

[4] BOEHM, H., WEISER, M., AND BARTLETT, J. F. Garbage Collection in an
Uncooperative Environment. Software - Practice and Ezperience (Sept. 1988).

[5] CARDELLI, L. The Functional Asbtract machine. Polymorphism (1983).

[6] CHAILLOUX, E. Compilation des langages fonctionnels : CeML un traducteur ML
vers C. Th~se d'universit6, Universit6 Paris VII, Nov. 1991.

[7] COUSINEAU, G., CURIEN, P. L., AND MAUNY, M. The Categorical Abstract
Machine. Functional Programming Languages and Computer Architecture (1985).

[8] GABRIEL, R. P. Performance and Evaluation of Lisp Systems. Mit Press. Cam-
bridge, Massachusetts. 1985.

[9] JOHNSSON, T. Lambda lifting: transforming programs to recursive equations.
In Conference on Functional Programing Languages and Computer Architecture.
LNCS 201 (Nancy, 1985), ACM, Springer Verlag.

[10] KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming Language.
Prentice-Hall, 1983.

(11] LEROY, X. The ZINC experiment : an economical implementation of the ML
language. Tech. Rep. 117, INRIA, Feb. 1990.

[12] MCCARTHY, J. Recursive Functions of Symbolic Expressions and Their Compu-
tation by Machine. Communications of the ACM (1960).

[13] MILNER, R., TOFTE, M., AND HARPER, R. The Definition Of Standard ML.
MIT Press, 1990.

[14] MORRISON, R., DEARLE, A., CONNOR, R. C. H., AND BROWN, L. An Ad Hoc
Approach to the implementation of Polymorphism. In Tnansaction on Program-
ming Languages ans Systems (1991), ACM.

[15] STEELE, G. L. Data Representation in PDP-10 Mac Lisp. In MACSYMA Users
Conference (1977).

[16] TARDITI, D., AND ACHARYA, A. A guide to sml2c. Tech. rep., CMU-CS. June
1991.

[17] WEIS, P., APONTE, M. V., LAVILLE, A., MAUNY, M., AND SUAREZ. A. The
CAML reference manual. Tech. Rep. 121, INRIA, Sept. 1990.

51

Standard ML for MS-Windows 3.0

Yngvi S. Guttesen
Department of Computer Science

The Technical University of Denmark
DK-2800 Lyngby

January 31, 1992

Abstract
Standard ML of New Jersey (SMLNJ) is a Standard ML compiler suit-

able for porting to different architectures. The compiler consists of a front end
written i ML, a back end also written in ML, and a runtime system written i C
and assembler. The front end is relatively independent of the target machine.
This makes it easy to port the system to other architectures.

SMLNJ has up to now been reserved for workstations running UNIX. Code
generators are available for a number of processors and the runtime system has
been adapted to different UNIX versions.

The purpose of this paper is to report a new code generator for the Intel
80386 processor and a revised runtime system which runs under Windows. The
code generator described in this paper is almost independent of the runtime
system and consequently of the operating system, so it can be used in other
architectures based on the 80386 processor, such as OS/2 and XENIX.

1 Introduction

Standard ML of New Jersey [4] is an implementation of the programming language
Standard ML [61. So far, Standard ML of New Jersey (SMLNJ) has solely been
available on machines that run under the UNIX operation system. The purpose of
this paper is to report a port of SML.NJ which runs on the Intel 80386 processor
under Microsoft Windows 3.0, one of the most common combinations for PC's.

Our port of SML.NJ consists of two parts:
1. Standard ML modules which the SMLNJ code generator calls in order to

produce 80386 machine code.

2. A new runtime system written in C and 80386 assembly language.

The first part is largely independent of Windows, i.e. it could be used for
generating 80386 code that would run under other operating systems. The second
part was necessitated by the fact that the runtime system has to run under Windows.
which is very different from UNIX.

The reson we wrote parts of the runtime system in assembly language is that
SMLNJ generates 32-bit code but no 32-bit C compiler is currently available under
Windows.

52

2 THE 386/WINDOWS PLATFORM

When a 32-bit version of Windows becomes available, a new runtime system,
which more closly resembles the original runtime system, can be written.

Few prerequisites are required to read this paper: familiarity with ML is necce-
sary and some knowledge about the Intel 80386 assembler is useful.

The rest of this paper is organized as follows: in Section 2 we review those aspects
of the 80386/Windows platform that are of particular interest in this context. In
Section 3 we report the new runtime system and in Section 4 we describe the new
code generator. Finally in Section 5 we show an example.

Many of the technical details that are not covered in this paper can be found as
comments in the source code. References are made to the relevant files, which are
located in the sml distribution directory.

2 The 386/Windows platform

In this section we discuss those aspects of the 80386 and Windows, that are im-
portant in the context of SML.NJ. Windows causes troubles in implementing the
system on a PC. This is because Windows still is based on the old 8086 memory
model where the memory is divided into 64k segments. As explained in Section
2.2, this fits badly with the assumptions which SML.NJ makes about storage usage;
these assumptions are described in Section 2.1. In Section 2.3 we describe how one
can fit the two together.

2.1 Assumptions that SML..NJ relies on

The compiler operates with two basic datatypes - integers and pointers - both 32-
bit'. Thus it is desirable that the architecture supports 32-bit data and addresses.
The way memory is allocated and the way the garbage collection is done [1, 2]
assumes that the ML code and data are located in a single continuous memory
block. Since compiled ML code accesses variables and functions in the runtime
system through 32-bit pointers and vise versa, the runtime system should be in the
same logical memory space as the ML code/data.

The compiled ML code occasionally makes calls to the operating system, of
which some are critical and other are of a more peripheral nature. That is, some
of the system calls are used by the compiler itself whereas others just are for use
in user applications. The critical system calls must be supported by the operating
system, or at least it must be possible to simulate a corresponding action.

Languages like ML make heavy use of memory, so the operating system should
provide some kind of virtual memory.

In the next two sections we will see how the 80386 and Windows meet these
requirements. Only a brief overview together with the choices made will be given
here. For a more elaborate discussion of the problems with choosing a memory
model and how to build the system, the reader is referred to [5].

lactually only 31 because the least significant bit is used as a tag bit to distinguish between integers
and pointers [2].

53

2 THE 386/WINDOWS PLATFORM

2.2 The 80386

The 80386 processor has 32-bit registers for manipulation of code and data. It is
possible to address up to 232 bytes (i.e. 4 Giga bytes), and the built-in paging
mechanism makes virtual memory possible.

The memory organization is of interest to us. The 80386 operates with two kinds
of segments:

USE16: these are 16-bit segments. An address consists of a 16-bit seg-
ment address and a 16-bit offset. Code running in this type of segments
by default uses 16-bit addresses and 16-bit data. Segment registers con-
tain indices into a descriptor table that contains information about the
type and location of the segment. With these segments the code and
data has to be divided into 64K pieces, causing the well-known problems
with managing large programs.

USE32: these are 32-bit segments. An address consists of a 16-bit seg-
ment selector and a 32-bit offset. Code running in this type of segments
by default uses 32-bit data and 32-bit addresses. This makes it possible
to have a flat 32-bit memory model where the memory consists of a single
contiguous block.

The same binary machine code will cause different actions in the two types of
segments. When using USE16 segments, the 386 operates much like the predecessor
80286, only now 32-bit registers for manipulation of data are available. When using
USE32 segments the processor acts like a real 32-bit processor.

The 80386 operates with separate code and data. It is not possible to write into
a code segment nor to execute code from a data segment. But by letting a code
segment register and a data segment register point to the same physical memory,
self-modifying code becomes possible. This is known as segment aliasing.

The instruction set is comprehensive enough to implement the abstract machine
that the front end generates code for. There are some problems in that the 386
has inherited many of the peculiarities from its predecessors. Some registers are
dedicated to special purposes in some instructions and different addressing modes
are available in different instructions. For details, see [5].

In short, the 80386 has what is needed to support the compiler. Unfortunately,
Windows does not make all its capabilities available to the programmer.

2.3 Windows
Although Windows in enhanced mode exploits some of the processors 32-bit facil-
ities, it continues to adhere the segmented memory model. It is not possible to
implement a Windows application using an exclusively flat 32-bit memory model.
Windows itself relies on 16-bit segments and a Windows application must contain
at least one USE16 segment to interact with Windows.

Considerations about implementing the system using the USE16 memory model
only, are given in [5]. Here I'll just state that it is not possible to get a satisfactory
system within that model. Instead I'll explain how to run 32-bit programs under
Windows.

54

3 THE RUNTIME SYSTEM

The dynamic-link library WINMEM32.DLL which comes with the Software
Development Kit (SDK) provides a set of functions that allow an application to
make use of the 32-bit capabilities of the 80386 processor. It contains a function
GlobaI32Aloc that allocates a USE32 data segment (up to 16Mbytes) for which a
code alias can be made with the function Globa132CodeAlias, thus enabling seg-
ment aliasing. This makes it possible to generate and run 32-bit ML code within
Windows.

As mentioned above (parts of) the runtime system should lie in the same address
space as the ML code. We shall somehow move the runtime system into the ML-
heap allocated with the Global32Alloc function. This can be done by collecting the
relevant variables and functions of the runtime system in an assembler module, and
then compiling and linking this module into a segment that can be copied into the
ML-heap when initializing the system (the Microsoft C compiler cannot generate
32-bit code so we have to use the assembler). It is possible to access an USE32
segment from C code through a 64K "window" obtained by the Globall6PointerAlloc
function in the WINMEM32 library. This function allocates an USE16 alias to a
portion (up to 64K) of the USE32 segment, but it is inconvenient and slow to use
this technique when operating on larger portion of the ML heap. With the assembler
one has completely control over and access to all the different kinds of segments.

There are three types of functions in the runtime system:

"* functions that are called directly from the compiled ML-code must be placed
in the ML-heap and therefore must be implemented in assembler.

"• functions that interact closely with the ML-heap; these could be implemented
in C by using USE16 aliases to access the ML heap, but have been implemented
in assembler for greater efficiency.

"* functions that hardly interact with the ML-heap; these can without any loss
of efficiency be implemented in C.

The heart of the garbage collector is implemented in assembler together with
some few utility functions (as are the functions that are called directly from ML).
The rest of the runtime system is implemented in C. Access to the ML-heap is
obtained through 64K "windows" allocated with Globa116PointerAlloc function.

3 The runtime system

In this section the organization of the new runtime system is described in terms of
the existing SML.NJ runtime systems.

The SMLNJ runtime system is written in C and assembler. It consists of:

* A carbage collector

* Small library functions written i assembler

* Small library functions written i C

* Facilities to handle Export and Import

* Facilities to handle signals (interrupts)

The runtime systems for the different UNIX versions are very alike. The dif-
ferences are mostly expressed using #IFDEF OPSYS ... #ENDIF declarations in

55

3 THE RUNTIME SYSTEM

the C-code. When writing a runtime system for Windows we cannot simply reuse
the original C-code. As mentioned in the previous section, there are problems with
mixing USE16 C-code and USE32 ML-code. However, I have tried to maintain the
original structure of the runtime system, and only made modifications where needed
because of the mixed memory model and the restrictions made by Windows. (Before
reading the C code of the new runtime system, the reader is advised first to look at
the original runtime system written for UNIX, because the many non-standard C
details in the Windows version reduce the clarity.)

3.1 Segments

One of the first things the system does, when started, is to setup the USE32 segments
that constitute the ML-heap. This is done by the code in the file segments.c. A
USE32 segment (called Use32Data) is allocated and a code alias (called Use32Code)
is established. These two constitute the ML-heap. The part of the runtime sys-
tem that must lie on the ML-heap are placed in an assembler module (in the file
prim.asm) which is compiled and linked into a segment (called _RUNCODE). The
contents of this segment is copied into the ML-heap by the code that set up the
USE32 segments.

3.2 The inteface between ML and the runtime system

After the system is initialized, control is passed to the compiled ML code. A C
structure which contains the addresses of relevant variables and functions in the
runtime system is passed on to the ML code. To call a C library function the ML
code looks up its address faddr in a table and calls the calLc function with faddr
as an argument.

Our interface must handle the context switch from USE16 to USE32 associated
with the transfer of control from the runtime system (USE16) to the compiled ML
code (USE32). When the ML code is entered, registers that the C compiler uses are
saved on the stack. A C structure (MLState) holds the ML state. Before jumping
to ML, registers are loaded from this structure. When returning to the runtime
system things happens in reverse order.

When executing code in the runtime system the values in the segment registers
are taken care of by the C compiler/linker and the Windows loader. Before jumping
to the compiled ML-code we must load the segment registers with the correct values.
DS is used as implicit segment register in most machine instructions. ES is used in
string operations, and the SS segment register is used when ESP and EBP serve as
index registers in memory references. DS, ES, and SS are loaded with the Use32Data
value returned by Globa132AIfoc, before jumping to the ML-code. Care must be
taken when switching stack in this way. When the USE16 stack is used, the upper
16 bits of the stack pointer (ESP) are not used, and can have random values. When
switching to the USE32 stack we must ensure that the ESP register contains a legal
stack address. After a move to the SS register the 80386 interrupt is disabled in one
instruction, so we can handle this by the following code sequence:

mov ax, Use32Data
mov ss, ax ; no interrupts between

56

3 THE RUNTIME SYSTEM

mov esp, Use32StackPointer ; these two instructions

The context switch is handled by the function restoreregs in the file interfce.asm
and by the functions enterUse32 and saveregs in the file prim.asm, which also
contains the variables and functions which must be placed in the ML-heap.

3.3 C library functions

The UNIX runtime system contains a number of C library functions that handle the
interaction with the operating system. Some of these are UNIX specific and have
no equivalent in Windows. In the Windows runtime system, these will generate a
system exception if called:

void foo(ML-val-t arg)
{ raise-syserror("foo is not implemented under Windows!"); I

Certain functions that are not crucial to the compiler and that are difficult to
implement under Windows are not implemented yet, and will also generate a system
exception, if called.

The functions crucial to the compiler are all implemented. Some of these func-
tions are UNIX specific and do not have an equivalent meaning in Windows, e.g.
the masking and unmasking of signals. When called, those functions will perform
some neutral action but will not cause a system exception. This will in some cases
mean wrong return values to the ML system but these are not crucial. For example,
Windows cannot perform all of the timer functions that are available in UNIX, so
timing is not accurate in the Windows system. The C library functions are located

in the file callc.c.
Details about the interaction between the runtime system and the ML code

and data are found in [5], and in the comments in the files prim.asm, gc.asm,
interfce.asm, and util.asm.

3.4 Assembly library functions
There are a number of assembler library functions that are called directly from
compiled ML code. These are:

* array(n,z) allocates an array of length n, and initializes its elements to x.

* callc(fa) calls the C function whose address is f with the argument a.

* create-b(n) allocates an uninitialized byte-array of length n.

* create-s(n) allocates a string of length n.

* floor(z) returns the "floor" of the real number x.

9 logb(z) returns the exponent of the real number x.

* scalb(z) inserts a new exponent into the real number z.

Floating point operations are executed by using the 80387 math co-processor.
We have added utility functions to handle the mixed memory model. Se comments
in the fie util.asm.

57

3 THE RUNTIME SYSTEM

3.5 Garbage collection
The original garbage collector operates on the entire ML heap. Because it is difficult
and inefficient to access USE32 data from the C code, We have implemented the
heart of the garbage collector in assembler. It is actually just a "hand compilation"
of the original garbage collector written in C, where 32-bit addresses and registers
are used. The heart of the garbage collector is located in the file gc.asm, whereas
other g.c. related functions are found in the file callgc.c.

3.6 Signal handling

In the UNIX version signal handlers have been implemented for a number of hard-
ware signals. This is not possible in the Windows version. The whole signal ma-
chinery has been neutralized in the Windows version. The lack of signal handlers
has some annoying consequences. For example it is not possible to stop an infinite
loop with Ctrl-C.

As shown in [1] signals can, in a smooth way, be used to initiate garbage col-
lection. All the existing implementations for UNIX use signals this way, either by
allocating ahead until a pagefault occur, or by an explicit test for the available
memory followed by an "interrupt on overflow". This can't be done in the Windows
version. Instead we must make an explicit test and jump to a routine that can
initiate the garbage collection when necessary.

cMp datalimit, allocptr
jno no-overflow I 8 bytes
jmp initiate.gc I

no-overflow: ...

instead of:

cMp datalimit, allocptr I
into 1 4 bytes

This is unpleasant because it takes up space (we shall perform this check at the
beginning of every function).

3.7 Export and Import
In the UNIX version it is possible to export the state to an executable file (a.out
format). This is used to make stand alone programs, and in particular it is used
when bootstrapping the system to make "ready to run" versions of the interactive
system and the batch compiler. Because of the problems that Windows has in
handling USE32 segment this is not possible in Windows.

The ability to export the state to an executable file, has influence on the exe-
cution speed and the memory requirements. If exported to an executable file, the
compiler code is located together with the runtime system below the base address
of the ML heap, and will therefore not be collected when a major collection is per-
formed [1]. This would in our system mean higher execution speed because most of

58

4 THE CODE GENERATOR

functor CPSgen(Machine : CKACHINE)

fun gen cexp = (* generate code for the CPS-expression cexp *)

Machine.subl3t(immed 1, regbind v, arithtemp)
•... end

Figure 1: CPSgen converts CPS-expressions to machine code. Functions in the structure
which CPSgen is applied to, shall generate the corresponding machine code, when called
for by CPSgen.

the time is spent doing major collections. Because the heap always is at least three
times the size of the living data [1, 2], the presence of the whole compiler on the
heap contributes considerably to the memory requirements.

In principle, we could simulate the export by writing the contents of the ML-
heap together with the contents of the runtime system's data segment to a file, and
then use a special version of the runtime system to load and execute this file. This
has not been done yet; instead the runtime system can load *.mo files as described
in the howto-boot file in the SML.NJ documentation directory.

4 The code generator

The SMLNJ is nicely divided into a machine-independent front end and a machine-
dependent back end. A single signature (called CMACHINE) defines the interface
between the two. The back end consists of a few structures that - together with
a few structures in the front end - are described below. At the end of this section
some special aspects of the 80386 that has influence on the code generator are
examined more closely. The intention with this section is to give a survey of the
code generator and the description is therefore kept at a very high level.

4.1 From CPS-expressions to machine code
The front end transforms SML source code into CPS-expressions [3, 5, 7, 8]. The
transformation of CPS-expressions into machine code is handled by the machine-
independent functor CPSgen. CPSgen is parameterized on elementary code gen-
erating functions specified by the signature CMACHINE. That is, CMACHINE
defines names for datatypes, variables, and functions that the front end will use
when transforming CPS-expressions into machine code (see Figure 1). The CPSgen
functor is located in the file generic.sml, and CMACHINE is found in cmachine.sig.

4.2 Backpatch and jumpsize-optimization

The back end has to handle relative addresses. That is, we have to backpatch rel-
ative jumps and other instructions that use relative addressing. To help in this, a
machine-independent functor, Backpatch, is included in the compiler. Backpatch is

59

4 THE CODE GENERATOR

parameterized on a machine-dependent structure Jump which contains the infor-
mation needed to backpatch on a particular machine. Backpatch needs to know the
size in bytes of the instructions that use relative addressing and how to emit code
for these. The signatures BACKPATCH and JUMP are given in Figure 2.

The machine code generator can make use of the primitives named in BACK-
PATCH (emitstring, newlabel, etc) when implementing the functions in CMA-
CHINE. For example the emitstringO is used every time a string (code or data) is
put into the code (see Figure 3). The full Backpatrh functor, which is part of the
general SMLNJ system, can be found in the file backpatch.sml. The Jump structure
for the 80386 is found in the file 386jumps.smi.

4.3 The 80386 code generator
As mentioned in section 4.1 we have to write a structure that matches the CMA-
CHINE signature. A functor CMach386 is used for this. The front end includes
a batch compiler that can generate assembler code, so we need to generate both
assembly code and machine code. The 'argument' given to CMach386 determines
which one is generated.

The signature CODER386 defines a subset of the 80386 instruction set and
addressing modes, that is used in the code generation. Two functors which match
this signature

MCode386: generates machine code

ACode386: generates assembly code

are outlined in Figure 3.
We see how the functor MCode386 is parameterized on the machine-dependent

Jump structure mentioned above, and how this structure is passed on to Backpatch.
This is how we get access to the primitives named in the BACKPATCH signature.
When generating assembly code we do not need to backpatch and therefore the
Jump structure is unnecessary. Instead symbolic labels are used. Notice that the
primitives in Backpatch are used in the MCode386 module only.

These two functors are used to make a 80386 code generator to be passed on
to CPSgen. Applying the functor CMach386 to one of them results in a structure
whose functions when called, generates code (machine or assembly) for the 80386.

The signature CODER386 is found in the file 386coder.sig. The Mcode386 and
the ACode386 functors are found in the files 386mcode.sml and 386acode.sml.

4.4 Putting it together

SML-NJ includes an interactive system and a batchcompiler. The front end func-
tor IntShare defines the interactive system, and Batch defines the batchcompiler.
Figure 4 shows how to build the interactive system and the batchcompiler for the
80386. Batch takes 2 arguments; M that generates machine code and A that gen-
erates assembly code. Intshare takes three argument where one of them (Machm)
is the structure that generates the machine code. Comp386 is the batchcompiler
module and Int386 is the interactive module.

60

4 THE CODE GENERATOR

signature BACKPATCH = (* Machine-independent
Sig

eqtype Label
type JumpKind (* Note I

val neulabel unit -> Label (* Create a new label

val define Label -> unit (* Associate a label with a point
in the code

val emitstring: string -> unit (* Insert a string into the code *)

val align unit -> unit (* Ensure that the next code is
on a 4-byte boundary

val jump JumpKind*Label -> unit (* Insert a JumpKind instruction
into the code (note 2)

val mark unit -> unit (* Insert a gc-tag in the code
(note 3)

val finish unit -> string (* Initiate the backpatching. *)
end

signature JUMPS = (* Machine-dependent
Sig

type JumpKind
val sizejump JumpKind*int*int*int - nt (* return the size of the

JumpKind instruction
val emitjump :JumpKind*int*int*int -> string (4 emit code for the JumpKind

instruction (note 1) *)
val emitlong int -> string (* insert a 32-bit litteral

in the code *)
end

functor Backpatch(Jump JUMPS) : BACKPATCH = (* Machine-independent
struct

open Jump

datatype Desc = ... I JUMP of Jumpkind * Label * int ref * desc I

fun jump(k,lab) = refs := JUMP(k,lab,ref 0, !refs)

end C* functor Backpatch *)

Note 1: The JumpKind datatype is used to encode the different instructcons that uses relative addresses.
The fragment of backpatch shown here indicates how the "jumps" are inserted into a tree to be backpatched
later.
Note 2: The code generator calls this function when instructed to generate code for an instruction that
refers to a relative address (i.e. to labels), jump makes a note of this instruction, and later when the
backpatching in initiated, Backpatck can determine the size of the instruction (using size~jump) and how
to emit code for it (using emutjunp).
Note 3: Garbage collection (GC) is explained in [1].

Figure 2: The BACKPATCH and JUMP signatures

61

4 THE CODE GENERATOR

(* The basic machine code generation *)
functor MCode386(Jumps : JUK3PS386) CODER386 =

struct
structure Emitter BACKPATCH = Backpatch(Jumps)
open Jumps Emitter

datatype EA =

fun movl(x EA, y : EA) = emitstring (... (s build up the string
that constitute a
move instruction *)

(* notice how the emitstring from Backpatch is used ,)

end (* functor MCode386 *)

(* The basic assembly code generation *)
functor ACode386() CODER386 =

struct

datatype EA

fun movl(x El, y El) = (emit "mov "; emit2args(x,y))

end (* functor ACode386 *)

(* The abstract machine e)

functor CMach386(Coder : CODER386) : CRACHINE =

datatype EL

fun move(x EL, y EL) = Coder.movl(x,y)

end (* functor CMach386 *)

Note: When CPSgen calls the abstract instruction move(,) one of the movi(functions will
be called to generate the desired code.

Figure 3: The basic code generators for the 80386 (machine and assembly code).

62

4 THE CODE GENERATOR

structure MC386 : CODEGENERATOR =

struct

structure MachineCoder = MCode386(Jumps386)
structure CMachine = CMach386(MachineCoder)
structure M- hineGen = CPScomp(CMachine)

fun generate lexp = (MachineGen.compile lexp; MachineCoder.finisho)

end (* structure MC386 *)

structure AC386 : ASSEMBLER =

struct

structure IssemCoder = ACode386()
structure CMachine = CMach386(AssemCoder)
structure AssemGen = CPScomp(CMachine)

fun generate(lexp,stream) = (Ass386.outfile := stream;
AssemGen. compile lexp)

end (* structure AC386 *)

structure Int386 = IntShare(structure Machm = MC386
val fileExtension = ".386"
structure D = BogusDbg

structure Comp386 Batch(structure M=MC386 and A=AC386)

Figure 4: The 386 glue

63

4 THE CODE GENERATOR

4.5 Special conditions in 80386
The compiler was originally designed for the Vax and M68Ox0 family. Later on,
code generators have been made for other architectures like MIPS and SPARC. The
80386 lacks some of their facilities and this has caused some problems.

One problem is the number of general registers. The CMACHINE signature
specifies a set of variables. These are supposed to be in registers. But the 80386
has only seven general registers, so we have to simulate some extra registers in
the memory. Where should these be placed? Under Windows it is possible to use
absolute addresses because we manually allocate a segment to hold the ML code
and data, and therefore have control over what goes where. Thus we can allocate
say the 4n lowest addresses in the ML-heap to hold the n "memory registers". But
in general (i.e. in other operating systems) we cannot use absolute addresses.

The runtime system (written in C) defines a set of variables that compiled ML
code uses. These (or theirs addresses) are placed in a C-structure whose address is
passed on to the ML code when initializing the system. In the same way we could
allocate space in the runtime system (e.g. int MemRegs En]) and pass MemRegs to
the ML code. But this would require some changes in the front end, and the goal
was to implement the code generator without any changes at all in the front end.

As a result of Continuation Passing Style, ML does not use the stack. We
therefore have a static stack when running ML code, so the "memory registers" can
be put on the stack in the same way as one would allocate space for local variables
on the stack in a C-compiler. This is what has been done here. But care must be
taken when referring to these variables. Some registers in the 80386 are dedicated
to special purposes in some instructions. Consequently, the stack is used by a few
functions in the code generator to save the value of these registers, when necessary.
But this is not a problem because we always know exactly how much has been
pushed onto the stack.

Using the stack to hold the memory registers has another advantage over absolute
addresses in that we save 2 bytes in the code size on every reference to memory
variables. The code size is a serious problem when running under Windows because
we are restricted to 16 Mbyte.

Because the 80386 cannot perform memory to memory operations, a lot of mov-
ing to temporary registers takes place, which again contributes to the code size.
This is a serious problem with the 80386 when running under Windows.

Another problem with the Intel 80386 microprocessor is that it does not directly
support PC-relative addressing. SMLNJ provides facilities to handle this problem.
The front end keeps track of the addressing requirements of each function and calls
the beginStdFn in CMA CHINE if it uses PC-relative addressing. One of the param-
eters to beginStdFn is the closure of the function so beginStdFn can load the base
address and later use it for relative addressing (see the file cmachine.sig for details).
But in version 0.66 of the compiler, the needPC function (located in CPSgen) that
determine whether a function uses PC-relative addressing is constantly true:

fun needPC cexp = true

Thus, if the above technique is used, every function gets the extra overhead with
calculating a function's base address. Hoping that many functions don't use PC-
relative addressing I have chosen another technique. We need to generate code for
instructions like load effective address:

64

5 EXAMPLE

LEA regi, (PC,offs) ; regI := PC+offs

This can be done by the following piece of code:

1000: call 0 ; 1005 pushed (relative call)
1005: pop eax ; eax = 1005
1006: sub eax, offs+5 ; +5 because the size of the call

; instruction is 5 bytes

This way we can simulate PC-relative addressing. The size of these three instruc-
tions is 12 bytes, so if this kind of addressing is performed often it is better to use
beginStdFn as described above. The frequency of PC-relative addressing ought to
be measured to determine which technique is better.

This concludes the description of the 80386 code generator.

5 Example

In this sections we show how a simple function is compiled with the 80386 code
generator. The assembly code shown below is generated with the assemble command
in the batch compiler (see the file BATCHINSTALL).

fun f x = if x=O then 1 else x*f(x-i)

is compiled into:

; Cesp+O0] is the datalimit "register"' and holds the highest available addr.
; [esp+12] holds the address of the rutine to initiate g.c.

[eps+20J holds the address of the rutine to handle overflow
;esp+40J is the standard argument ''register''

; [esp+44] is the standard continuation ''register''
; [esp+48] is the standard closure ''register''

L3:
cmp duord ptr [esp+O] ,edi ; check the available memory
ins of
call dword ptr [esp+12J ; and call garbage collection if necessary
Q0:
cup dword ptr [esp+40],1 ; if x=O
jne L14
mov edx,dword ptr [ebp+O] ; then continue with 1
mov duord ptr Cesp+44],ebp
mov dword ptr [esp+40],3
imp adx
L14: ; else x*f(x-1)
mov .ax,49
stos eax ; setup a closure with the argument x and
lea ea,L4 ; the continuation for the multiplication L4
stos eax
mov eax,dword ptr (esp+40J

65

6 CONCLUSION

stos ea.i
mOV eaz,ebp
stos eax
lea ebp,dword ptr [edi+-12]
sub dword ptr [esp+40],2 ; x=x-1
jno Of ; check for overflow
call dword ptr Cesp+20]
Go:
imp L3 ; make the call I(X-1)

L4:
cmp duord ptr Cesp+0 ,edi ; check the available memory
ins Of
call dword ptr Eesp+12] ; and call G.C. if neseccary
cc:
mov eax,dword ptr Cesp+44J ; make the multiplications
mov eaxdword ptr [eax+4J
mov dword ptr [esp+48] 1 eax
mov ebx,dword ptr (esp+48J
sa" ebx,1

sub dword ptr [esp+40J,1
mOV ecx,dword ptr Eesp+40J
imul ecxebx
mov dword ptr Cesp+40J,ecx
jno Qf
call dword ptr [esp+20J
g0:

add dword ptr [esp+40], 1
mov eax,dvord ptr [esp+44J
mov eax,dword ptr [eax+8J
mor dword ptr [esp+44J, eax
mov eax,dword ptr [esp+44)
mov edx,dword ptr [eax+0O
imp edx ; and continue

Notice how the stack is used to simulate registers, and how the EAX and ECX
are used as tempory registers. In SML.NJ an integer i is represented as i * 2 + 1, s,
the integer one (1) is represented as the integer three (3).

6 Conclusion

We have succeded in porting the SML_.NJ version 0.66 to a PC running Windows. A
general 80386 code generator is made, which can be used in other architectures based
on the 80386 processor. The new runtime system lacks some of the facilities found
in the UNIX version, but we will not continue working on the runtime system until
new 32-bit versions of Windows and C compilers becomes available. The purpose
of this project was to see if it was possible to implement the whole SMLNJ system
on a PC, and that we have proved.

66

REFERENCES

No changes have been made in the front end 2, so the whole system is imple-
mented. Other compilers for a subset of ML are available on the PC, but this is the
first time (to our knowledge) that a complete SML compiler runs on the PC.

References
[11 Andrew W. Appel. "Simpel generational garbage collection and fast alloca-

tion". Software Practice and Experience, Feb. 1989.

[2] Andrew W. Appel. "A Runtime System", LISP AND SYMBOLIC COMPU-
TATION: An International Journal, 3, 343-380, 1990. Kluwer Academic Pub-
lishers, Manufactured in The Netherlands.

[3] Andrew W. Appel. "Continuation-Passing, Closure-Passing Style", Sixteenth
ACM Symp. on Principles of Programming Languages 293-302, 1989.

[4] Andrew W. Appel and David B. MacQueen. "A Standard ML compiler". Func-
tional Programming Languages and Computer Architecture (LNCS 274), pp.
301-324. Springer-Verlag, 1987.

[5] Yngvi S. Guttesen. "Flytning af SML til en PC", Master Thesis, ID-E-542,
1991. Department of Computer Science, The Technical University of Denmark.

[6] R. Milner, M. Tofte, and R. Harper. "The Definition of Standard MLV, MIT
Press, 1990.

[7] D. Kranz, R. Kelsey, J. Rees, P. Hudsk, J. Philbin, N. Adams. "Orbit: An
optimizing compiler for Scheeme". Proc. Sigplan '86 Symp. on Compiler Con-
struction, vol. 21 (Sigplan Notices), no. 7, pp. 219-233, July 1986.

[8] Guy L. Steele. "Rabbit: a compiler for Scheeme". AI-TR-474, MIT, 1978.

2We had to change some structure names because filenames in DOS can only be upto 8 characters in

length.

67

Completely Bounded Quantification is Decidable

Dinesh Katiyar Sriram Sankar"
Stanford University

California, USA

Abstract

This paper proves the decidability of subtyping for F< when the bounds on polymorphic
types do not contain Top (i.e., in all types of the form Va<:r1 .r2 , r, does not contain Top).
This general restriction is subsequently relaxed to allow unbounded quantification.

1 Introduction

F< [CW85,CG] is a typed A-calculus with subtyping and bounded second-order polymorphism.
The importance of F< in programming language design is that it provides a simple context for
studying the typing problems that arise when subtyping and bounded quantification are added
to polymorphic languages such as ML.

Curien and Ghelli [CG] recently developed a subtyping algorithm for F< and proved its partial
correctness. Subsequently, Ohelli [Ghe9O] presented a termination proof for this algorithm. A
mistake was discovered in this termination proof, following which Pierce [Pie92J presented a proof
showing that the subtyping problem for general F< types is undecidable.

This paper shows how one can make the subtyping problem decidable by imposing some restric-
tions on F< types. We first prove the termination of Curien and Ghelli's algorithm when the
bounds on all polymorphic types involved do not contain Top. i.e., In all types of the form
Va <:1,1 .r 2, r, does not contain Top. Such a bound completely determines the structure of a,
hence we refer to this as "completely bounded". We later show that this restriction can be relaxed
to allow unbounded quantification. Adding records and unions to our system causes it to become
undecidable. We are currently working on defining subset restrictions for records and unions
similar to those presented in this paper to make subtype checking decidable in the presence of
these types.

We are in the process of designing a type system based on F< for a prototyping language called
Rapide [BL90,MMM91], and are implementing a subtyping algorithm for this type system. Given
the undecidability of subtyping for general F< types, we need to restrict our type system so as to

"ERL449, Computer Systems Laboratory, Stanford University, Stanford, California - 94305. phone: (415)723-
1835. email: sankar~csstanford.edu.

68

make subtyping decidable. Results such as those presented in this paper will aid in determining
the necessary restrictions.

In Section 2, we present Curien and Ghelli's algorithm. We prove the termination of this al-
gorithm for completely bounded quantification in Section 3. Section 4 shows how we can relax
our restrictions to allow unbounded quantification. Section 5 presents examples of records and
unions that cannot be handled by simple extensions of Curien and Ghelli's algorithm. Section 6
concludes the paper by describing plans for future work.

2 Curien and Ghelli's algorithm

A F< type 7 is either a simple type (such as Int), a variable, a function type (7"1 - 72), or a
polymorphic type (Va<:r 1.r2). Given a list of assumptions r and two types a and -r, the subtyping
problem is to determine whether or not IF - a(<:r - i.e., whether or not 0r is a subtype of 7
given the assumptions in F. The assumptions in r will all be of the form a <: 7, where a is a
type variable and 7 is a type. (This convention - that a's refer to type variables and a's and
-r's refer to types - is used for the rest of the paper. We shall also use a to refer to simple types
- the context will make it clear whether a particular a is a variable or a simple type.) r- in this
case is called the bound of a and is referred to as r(a). Free variables in 7 may only be bounded
in other assumptions in F to the left (earlier in the list) of the assumption containing 7.

Curien and Gheli's algorithm is presented as a list of axiom schemas and inference rules. These
schemas and rules contain templates of subtyping problems. The algorithm proceeds by applying
the inference rules backwards to the subtyping problem. If the subtyping problem matches the
template below the line of an inference rule, it reduces to subtyping problems that can be derived
from the templates above the line of the inference rule. If the subtyping problem matches the
template of an axiom schema, the algorithm reports success. In all other cases, the algorithm
reports failure.

The axiom schemas and inference rules are listed below:

(NToP) F F- a<: Top

(NREFL) F I- a<:a

(NVAR)
r I- r(a) <: r
rF-a <:,r

(NRO)rF t- 1 <: Cr r F- a2 <: 72
(NAP, ~~r ýOW C1- a--* O2 <: 71 -- 72

(NALL)71 <: 47 F,a<:r f-a 2 <:r 2
(NALL) rF Va<:al.a 2 <: Va<:rl.r2

69

3 Proof of termination

We prove termination by defining a complexity metric which is finite and positive for each sub-
typing problem, and show that the application of inference rules causes the complexity of the new
subtyping problems generated to decrease. Since the complexity cannot decrease indefinitely, the
algorithm will have to terminate.

In 3.1, we define the complexity metric. In 3.2, we show how the complexity metric is affected by
applying the various inference rules. We conclude with a condition (Theorem 1) that, if satisfied,
will guarantee the termination of the subtyping algorithm. Finally, in 3.3, we show how our
restrictions on bounds of polymorphic types satisfies the condition of Theorem 1.

3.1 The complexity metric

We define the size of a type T with respect to a list of assumptions r, and refer to this as size(r)r.
The complexity of a subtyping problem F F- a <: 7 is defined as:

complexity(lr I- a <: 7) de size(a)r + size(-r)r

size(r)r is determined by recursively replacing variables in 7 with their respective bounds and
thep computing the textual size of the resulting expression. size(r)r is formally defined as:

size(Top)r = 1

size(a)r = size(P(a))r if r(a) is defined
S1 otherwise

size(T1 -- r2)r = size(ri)r + size(r2)r

size(Va<:ri.r2)r = size(ri)r + size(r 2)r,&<:,,

Examples:

1. size(Top -- a) <: It--.,
= size(Top).,<: ,i.t-•.tn + size(a). <: j,.igt

= 1 + size(Int -- Ifnt), <:j ,.t-.t
= 1 + size(Int)a <:n..1.t- lt + size(Int)a <:,ft-tat
= 1+1+1= 3.

2. siZe(Vafl <:(02 -- lnt).Cr0 Q2 <:It-. t

= size(a 2 -- Int)- 2 <: ,1,-9-1-1 + size(al:),, <:;n,--lt.ial <:a2--lJ
= size(a2)-2 <: t1t--.ut, + size(Int)... + size(a 2 - Int)Q2 <: jnt-Infal <:a2-I-t
= size(Int -- Int)... + 1 + size(aC2),2 <:Jngt-.Int,0 <:-.2--Int + size(Int)...
= 2 + 1 + size(Int -* nt)... + 1
=2+1+2+1=6.

70

Lemma 1 size(r)r is always finite and positive.

Proof. It is obvious from the definition of size that it has to be positive. We prove that it is
finite by showing that evaluation of size terminates for all r and r. A complexity metric similar
to that used in Ghelli's flawed termination proof actually works in this case.

The complexity metric to prove the termination of the evaluation of size(T)r is obtained by first
ordering all the variables that occur in 7 and r such that the following property is satisfied: If
ai is defined in the bound of aj, then ai occurs to the left of ai in the ordering. It is possible to
obtain such an ordering given the structure of F< (there may be multiple orderings that satisfy
this condition in which case, one of them is chosen arbitrarily). The depth of each variable is then
defined as the number of variables that occur to the left of it in this ordering.

The complexity of any subproblem size(r')r, that arises during the evaluation of size(T)r is the
tuple (D, S), where D is the maximum depth over all the variables that occur in r' and S is the
textual length of r'. There may be variables in T' and r' that do not occur in either of r or F.
These variables are created when an existing variable is duplicated in the reduction process, thus
requiring one of the uses to be renamed. The depth of the renamed variable is defined to be the
same as its unrenamed counterpart. The key to this proof is that defining the depth of renamed
variables in this manner maintains the condition based on which the initial ordering was created.

It is easy to see that the complexity decreases (the ordering between (D, S) tuples is lexicographic)
during the evaluation of size(r)r. For all reductions other than size(a)r = size(r(a))r, the D
component of the complexity metric either remains the same or decreases while the S component
decreases; whereas in the abovementioned reduction, the D component decreases.

Since this complexity metric cannot decrease indefinitely, the evaluation of size for any r and F
has to terminate. 1:0

3.2 The effect of inference rule application on complexity

NVAR

complezity(r I- a <:r) = size(a)r+size(r)r = size((r(a))r+size(r)r = complezity(I' I- F(a) <:r)

i.e., The complexity metric remains the same after application of the inference rule NVAR. How-
ever, NVAR may be applied continuously at most as many times as there are variables in F before
one of the other rules has to be applied. The complexity metric reduces when any of the other
rules are applied, so there is no problem.

NARRow

It is quite obvious that complexity(F I- T1 <:a,) and complezity(r L- 02̀ <: 7-2) are both less than
complezity(r l- r -- o- 2 <: ",- r2).

71

NALL

It is quite obvious that complezity(F I- r7 <: oa) is less than complexity(L I- Va<:a, .a 2 <:V <:r 1 .7"2).
We shall now simplify complexity(L I- Va<:a 1 .a 2 <:Vc<:Tr.r 2) - complexity(F,a<:r 1 I- Cr2 <:•)
to determine the conditions under which the complexity metric decreases when reducing to the
second rule above the line in NALL. This expression, which must be positive for the complexity
metric to decrease, simplifies as follows:

complexity(F - Va<:orj.o,2 <: Va:r1 .r2) - complexity(r, a<:r71 - a2 <: r2)
= (size(Va<:oa'.oa 2)r + size(Va <:rz.r 2)r) - (size(a2)r., <:,, + sze(r2)rpa<:u,)
= (size(al)r + size(a2)ra,<:,i + size(Ti)r + size(2)r~r,a<:u) - (size(a2)r., <: ri + size(r2)r,,<:,,)
= size(ao)r + size(ri1)r + (size(a2)r.,, <:,, - size(a2)r.a <: r)

We concentrate on the part size(o 2)P.a<: , - size(O2)r,. <: , from the last line above. If this ex-
pression is non-negative, then the overall expression will be positive, and therefore the complexity
metric will decrease on the application of NALL. We need to present the following lemma before
we can proceed further.

Lemma 2 For any types a, r, and for any list of assumptions F, such that the variable Cf is
not bounded in any of them, and also does not occur anywhere in F, size(a)r,,<:- = size(a)r +
n(size(T)r - 1), where n > 0 and depends only on a.

The evaluation of size(a)r, (for any F') will reduce to zero or more evaluations of the form
size(a)r,, in addition to other reductions. Reductions to the form size(a)rI may be either due to
occurrences of a in a, or occurrences of a in bounds in F' which are used to replace the variables
they bound. If F' does not contain any bound that contains a, then the number of times size(a)r,
reduces to the form size(a)r,, depends only on a. Suppose this number is n.

Therefore, size(o)r reduces to n evaluations of the form size(a)r,, each of which evaluates to 1
since a is not bounded anywhere. So we can write size(a)r as m + n where m is the result of the
evaluation of the remainder of the reductions.

Similarly, size(a)r,Q,<:r reduces to n evaluations of the form size(a)r,,, while the remainder of
the reductions evaluate to m. Each reduction to size(a)r,, further reduces to size(r)p),,. Since F"
is of the form F, a <: r,...., 7 does not depend on the portion of F" to the right of F. Therefore,
size(r)r,, = size(r)r. So we can write size(a)rp.,<:r as m + n(size(r)r), which is the same as
size(ar)r + n(size(r)r - 1). 0

We now simplify size(a2)r,,,<: , - size(a 2)rp,<: 7i.

size(r 2)r,a <: a, - size(a 2)r.a <: Tj

= (size(o2̀)r + n(size(al)r - 1)) - (size(a2)r + n(size(ri)r - 1)) (for some n > 0)
= n(size(ai)r - size(rl)r)

We are now ready to present the first of our main results.

72

Theorem 1 During the execution of Curien and Ghelli's algorithm, if size(ual)r > size(r1)r
(where al, 71, and r are as defined in NALL) is true every time NALL is used to reduce a sub-
typing problem to the subtyping problem derived from the right template above the line (r,a<:71 -
0 2 <: 7,2), then the algorithm will terminate.

Proof. Obvious from the results of this section. 0

3.3 Subset restrictions to guarantee termination

When applying NALL on a subtyping problem, we shall require that we first consider the subtyping
problem derived from F I- 7r1 <:a, (the left template above the line in NALL). Only if the
algorithm terminates successfully on this problem do we consider the subtyping problem derived
from r,a<:r1 I- a2 <:-r2 (the right template above the line in NALL). Hence, we can assume that
F I- r-1 <:a, when the algorithm is applied on the subtyping problem derived from F.a<:71 -
02 <: r2. Assuming this, we have the following corollary to Theorem 1.

Corollary 1 For every 7, a that are bounds of polymorphic types and for every list of assumptions
r, if r F- 7 <:a =* size(r)r <_ size(a)r, then Curien and Ghelli's algorithm will terminate.

Lemma 3 If size(rl)r = size(r 2)r, then, for any a, size(a)r,a<:,, = size(a)r,a<:,.r2

Proof. This follows trivially from Lemma 2. size(a)r,,<:, = size(a)r + n(size(r7)r - 1) =

size(a)r + n(size(r2)r - 1) = size(a)r,<:r, 0

We are now ready to present another key result, Theorem 2, that if the subset restrictions men-
tioned in Section 1 are satisfied, then the condition of Corollary 1 will be satisfied. A straight-
forward consequence of this is that if these subset restrictions are met, then Curien and Ghelli's
algorithm will terminate, and hence completely bounded quantification is decidable.

Theorem 2 For all types r, a that do not contain Top, and for any list of assumptions F, if
1'F H 7<:0a, then size(r)r = size(a)r.

Proof. IfrF-7<:a, then there must be a proof ri F1 H-<:'l,F 2
F r 2 <:ao,...,F n FT-n<:an

where r, = F, Tn = 7-, and a' = a, and each ri P- 7H' <:aý is either of the form of NREFL, or
obtained from earlier steps in the proof using one of the rules NVAR, NARROW, or NALL. Note
that NToP will not be used in such a proof since Top does not occur in a and 7.

We prove by induction that for all i (1 < i < n), size(r')rs = size(a')r,.. The induction hypothesis
is that for all j (1 < j < i), size(-rJ)rj = size(aj)r,. Assuming the induction hypothesis. we prove
size(rl)r, = size(ai)r,. There are four cases to consider:

1. Pý FH 7T <:a' is of the form of NREFL. i.e., ri = a'. Therefore, size(r)r, = size(a')r,.

73

2. ri - ri- <:ai is derived using NVAR from an earlier step of the form r F- (r7) <:o'. In
this case, ir is a variable bounded in ri. Therefore, size(ri)r = size(rP(r'))r- = size(a')r.

3. ri F- r' <: a' is derived using NARROW from earlier steps rk 7 rk <: ak and ýI F- 7T <: a,.
Then ri = rk = r', ri = a" -• r', and a' = rk - at. Therefore, size(r.)r, = size(ak)r, +
size(rt)r, = size(ak)rk + size(r1)r, = size(r7k)rk + size(al), = size(rk)r, + size(al)r, =
size(ai)ri.

4. rP F r7 <:a' is derived using NALL from earlier steps rk F- 7k <:ak and r, F- r7 <:a,.

Then r' = rk, rl = ri, a<:rk, ri = Va<=0k.T, and a' = Va<:Tk.Cr for some variable
a. Therefore, size(ri)r, = size(a')ri + size(r)ria<:ak = size(ak)r& + size(r')r,, <: T,- =
size(ak)r) + size(r')r, = size(rk)rk + size(al)rl = size(rk)r, + size(aL)r,,,<:-.k = size(ao)r,.
0

4 Allowing unbounded quantification

We can relax our restriction on the use of Top to allow unbounded quantification and still re-
tain decidability of subtype checking. Furthermore, any variable bounded by Top (directly or
indirectly) may be used as a bound for another variable. We refer to these variables as "Top-

bounded".

With this relaxation, there are two kinds of bounds that we can write: (1) Types that do not
contain either Top or Top-bounded variables; and (2) Types that are either Top or a Top-bounded
variable.

To show that this will not cause problems, we redefine size(Top) for all Top's that occur as bounds
of variables to be a number L that is larger than the size of any bounds of the first kind mentioned
above. With this redefinition of size, it is quite easy to see that Corollary 1 continues to hold
even when the bounds r and a are from this relaxed domain.

There are four cases to consider where r and a may each be either of the two kinds mentioned
above. We consider each case separately:

1. T and a are both types not containing Top or Top-bounded variables: This case has been
haudled in Theorem 2.

2. r and a are both types that are either Top or a Tor-bounded variable: Then size(r) =

size(a) = L.

3. r is a type not containing Top or Top-bounded variables while a is either Top or a Top-
bounded variable: Then size(a) = L > size(T).

4. r is either Top or a Top-bounded variable while a is a type not containing Top or Top-
bounded variables: In this case, r cannot be a subtype of a, so we need not consider it any

further.

74

5 Record and union types

We have shown that one can achieve a decidable type system for a fairly unconstricted subset of
F<. An immediate extension that we started working on was the addition of record and union
types. However, it turns out that adding either record or union types to the type system (along
with their associated inference rule) makes the subtyping problem undecidable. Finding the right
restrictions to allow the addition of these types is the subject of current research.

5.1 Record types

We denote the record type with fields 11 ... 1, having types 7- ... r,, respectively as {f1: r1 , ... , 1,: r,, }.

The inference rule for records is :

(NREC) F ý- a, <: rl ... r I- a,• <: '

r i- f{I:o a,.... , ,: o,,,, ,,+,:, + ,. } <:{f:I , . ,1: 7"J

Essentially one can either add extra fields to a record type or specialize the types of existing fields
to get a subtype.

As we saw earlier, the problem with the original unrestricted system was that one could have
subtypes that were structurally much more complicated than the supertype and one could exploit
this in creating subtyping subproblems that grew infinitely in their complexity. We prevented
this finally by restricting the use of Top, which is what allowed a subtype to be more complicated
than the supertype in the first place. However, record types provide another way of allowing a
subtype to be more complex than the supertype, namely by adding extra fields. So the empty
record type provides an entity conceptually similar to Top. We now show that one can reproduce
the non-terminating example mentioned in Pierce [Pie92], in spite of the restrictions on Top with
the use of records.

Let -1r = r --* b where b is some simple type. Note that -na <: -ir iff r <: o,.

Let
8 = {a:V, <:{}.-,{a:VO <:

Now consider the subtyping problem

ao <: 0- a•o <:{a:Val <:ao.-'al}

This causes the following sequence of subproblems to be generated infinitely:

ao<:O I- ao <: {a:Val<:no.-,a,}
ao<:o F- {a:Va,<:{}.-,{a:Va 2 <:a1 .-- ,a 2}} <: {a:Val <:ao.-,al}

auJ<:8, al <:o CE -,Ia:Va2 <: al -'a2} <: -lot,
ao<:O,a <: ao - al <: {a:Va 2 <:cal.-•c 2}
ao <:0, a<: ao - ao <: {a:Va-2 <:a 1 .-'a 2}
ao<:O, al<:co F {a:VC,2 <:{}.-,{a:Va 3 <:a 2.- 'a 3 }} <: {a:Va2<:al.-'02}

CEO<: 0, al<: Co, a2 <:a F -,{a:V13 <:C 2.--'a3} <: `a2

75

and so on.

This pattern of non-termination is practically identical to the one displayed in [Pie92].

5.2 Union types

Union types pose problems similar to that of record types.

Union types are written as {11:ri + ... + In:T.}, with the usual meaning. The inference rule for
union types is fairly straightforward.

(N N O)F ý- al <: 71 ... r -a,• < - T",

IF [_ Ill:al + ... -+ In: an} < :Ill: -r + ... + In: 7n + . .

The subtype is allowed to be a union over a subset of specializations of the types in the supertype.

Since the subtype can be a union of a fewer types than the supertype, one can have types with
unions in contravariant positions thereby resulting in .ubtypes that have more complex structures
than the supertype. Again, one can exploit this to ge..aerate an example of a subtyping problem
that doesn't terminate. Behavior identical to that displayed in the previous example on record
types arises for the subtyping problem

ao <: 0 I- o <: -1a: -n(Val <:ao.-'af)}

where

0 = -- ,{a:-(W <: -,{}.{a: -,(V,8 <: a.--,Q)})}

6 Future work

We are currently working on various possible subset restrictions on records and unions to make
subtype checking decidable in the presence of these types. Following this, we intend to extend
our system with recursive types. This might involve techniques similar to those employed by
Amadio and Cardelli [AC91] to study the interaction of recursive types with subtyping. A further
extension would be the addition of the so-called F-bounds [CCH*891, which essentially allow the
bounds of polymorphic functions to be recursive.

Acknowledgements

We would like to thank John Mitchell for many insightful discussions. We are also grateful
to David Luckham, Neel Madhav, Sigurd Meldal and other members of the Programming and
Verification Group at Stanford for many useful discussions on the type system for Rapide. The
authors were supported by DARPA grant ONR N00014-90-J1232 (Srirarn) and NSF grant CCR-
8814921 (Dinesh).

76

References

[AC91] R. Amadio and L. Cardelli. Subtyping recursive types. In Proc. 18th ACM Symp. on
Principles of Programming Languages, pages 104-118, 1991.

[BL90] F. Belz and D. C. Luckham. A new approach to prototyping Ada-based hard-
ware/software systems. In Proc. ACM Tri-Ada Conference, pages 141-155, 1990.

[CCH*891 P. Canning, W. Cook, W. Hill, J. C. Mitchell, and W. Olthoff. F-bounded quantifica-
tion for object-oriented programming. In Functional Prog. and Computer Architecture.,
pages 273-280, 1989.

[CG] P.-L. Curien and G. Ghelli. Coherence of subsumption. (to appear).

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471-522, 1985.

[Ghe90] G. Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating Inclusion
and Parametric Polymorphism. PhD thcsis, University of Pisa, 1990.

[MMM91] J. C. Mitchell, S. Meldal, and N. Madhav. An extension of standard ML modules with
subtyping and inheritance. In Proc. 18th ACM Symp. on Principles of Programming
Languages, pages 270-278, 1991.

[Pie92I B. Pierce. Bounded quantification is undecidable. In Proc. 19th ACM Si.mp. on
Principles of Programming Languages, pages 305-315, 1992.

77

An Extension of ML with First-Class Abstract Types

Konstantin L.ufer,* New York University, laufer@cs.nyu.edu

Martin Odersky,t Yale University, odersky@cs.yale.edu

I Introduction
Many statically-typed programming languages provide an abstract data type construct, such as the package
in Ada, the cluster in CLU, and the module in Modula2. In these languages, an abstract data type consists
of two parts, interface and implementation. The implementation consists of one or more representation types
and some operations on these types; the interface specifies the names and types of the operations accessible
to the user of the abstract data type.

ML [MTH90] provides two distinct constructs for describing abstract data types:
"* The (obsolete) abstype mechanism is used to declare an abstract data type with a single implemen-

tation. It has been superseded by the module system.
" The ML module system provides signatures, structures, and functors. Signatures act as interfaces of

abstract data types and structures as their implementations; functors are essentially parametrized
structures. Several structures may share the same signature, and a single structure may satisfy several
signatures. However, structures are not first-class values in ML for type-theoretic reasons discussed
in (Mac86] [MH88]. This leads to considerable difficulties in a number of practical programming sit-
uations.

Mitchell and Plotkin show that abstract types can be given existential type [MP88]. By stating that a val-
ue v has the existential type 3a. c, we mean that for some fixed, unknown type i, v has type "r [i/a] . This
paper presents a semantic extension of ML, where the component types of a datatype may be existentially
quantified. We show how datatypes over existential types add significant flexibility to the language without
even changing ML syntax; in particular, we give examples demonstrating how we express

"* first-class abstract types,

"* multiple implementations of a given abstract type,

"* heterogeneous aggregates of different implementations of the same abstract type, and
"• dynamic dispatching of operations with respect to the implementation type.

We have a deterministic Damas-Milner inference system [DM82] [CDDK86] for our language, whici
leads to a syntactically sound and complete type reconstruction algorithm. Furthermore, the type system i!
semantically sound with respect to a standard denotational semantics.

Most previous work on existential types does not consider type reconstruction. Other work appears to b4
semantically unsound or does not permit polymorphic instantiation of variables of existential type. By con
trast, in our system such variables are let-bound and may be instantiated polymorphically.

We have implemented a Standard ML prototype of an interpreter with type reconstruction for our cot
language, Mini-ML [CDDK86] extended with recursive datatypes over exintentially quantified componen
types. All examples from this paper have been developed and tested using t ir interpreter.

"Supported by the Defence Advanced Research Project Agency/Information Systems Technology Office under the Office
of Naval Research contract N00014-91-5-1472
Supported by the Defence Advanced Research Project Agency/Information Systems Technology Office under the Office
of Naval Research contact N00014-91-J-4043

78

2 ML Datatypes with Existential Component Types
In NIL, datatype declarations are of the form

datatype [arg] T = K1 of t1 I... K of ¶n

where the K's are value constructors and the optional prefix argument arg is used for formal type parameters,
which may appear free in the component types ci. The value constructor functions are universally quantified
over these type parameters, and no other type variables may appear free in diw q's.

An example for an ML datatype declaration is
datatype 'a Mytype = mycons of 'a * ('a -> int)

Without altering the syntax of the datatype declaration, we now give a meaning to type variables that
appear free in the component types, but not in the type parameter list. We interpret such type variables as
existentially quantified.

For example,

datatype Key = key of 'a * ('a -> int)
describes a datatype with one value constructor whose arguments are pairs of a value of type ' a and a func-
tion from type ' a to int. The question is what we can say about ' a. The answer is, nothing, except that
the value is of the same type ' a as the function domain. To illustrate this further, the type of the expression

key (3,fn x => 5)
is Key, as is the type of the expression

key([1,2,3],length)
where length is the built-in function on lists. Note that no argument types appear in the result type of the
expression. On the other hand,

key (3, length)
is not type-correct, since the type of 3 is different from the domain type of length.

We recognize that Key is an abstract type comprised by a value of some type and an operation on that
type yielding an int. It is important to note that values of type Key are first-class; they may be created
dynamically and passed around freely as function parameters. The two different values of type Key in the
previous examples may be viewed as two different implementations of the same abstract type.

Besides constructing values of datatypes with existential component types, we can decompose them us-
ing the let construct. We impose the restriction that no type variable that is existentially quantified in a
let expression appears in the result type of this expression or in the type of a global identifier. Analogous
restrictions hold for the corresponding open and abstype constructs described in [CW85] 1MP88].

For example, assuming x is of type Key, then

let val key(v,f) = x in
fv

end

has a well-defined meaning, namely the int result of f applied to v. We know that this application is type-
safe because the pattern matching succeeds, since x was constructed using constructor key, and at that time
it was enforced that f can safely be applied to v. On the other hand,

let val key(v,f) = x in
V

end
is not type-correct, since we do not know the type of v statically and, consequently, cannot assign a type to
the whole expression.

79

Our extension to ML allows us to deal with existential types as described in (CW85] [MP881, with the
further improvement that decomposed values of existential type are let-bound and may be instantiated
polymorphically. This is illustrated by the following example,

datatype 'a t = k of ('a -> 'b) * ('b -> int)
let val k(fl,f2) = k(fn x => x,fn x => 3) in

(f2(fl 7),f2(fl true))
end

which results in (3, 3). In most previous work, the value on the right-hand side of the binding would have
to be bound and decomposed twice.

3 Some Motivating Examples

Minimum over a heterogeneous list

Extending on the previous example, we first show how we construct heterogeneous lists over different im-
plementations of the same abstract type and define functions that operate uniformly on such heterogeneous
lists. A heterogeneous list of values of type Key could be defined as follows:

val hetlist =
[key(3,fn x => x), key([1,2,3,4],length), key(7,fn x => 0),
key(tzue,fn x => if x then I else 0), key(12,fn x => 3)]

The type of betlist is Key list; it is a homogeneous list of elements each of which could be a different
implementation of type Key. We define the function min, which finds the minimum of a list of Key's with
respect to the integer value obtained by applying the second component (the function) to the first component
(the value).

fun min [x] = x
I min ((key(vl,fl))::xs) =

let val key(v2,f2) = min xs in
if fl vl <= f2 v2 then key(vl,fl) else key(v2,f2)

end

Then min hetlist returns key (7, fn x => 0), the third element of the list.

Stacks parametrized by element type
The previous examples involved datatypes with existential types but without polymorphic type parameters.
As an example for a type involving both, we show an abstract stack parametrized by element type.

datatype 'a Stack = stack of (value : 'b,
empty : 'b,
push : 'a* 'b-> 'b

pop : 'b -> 'a * b

top : 'b -> 'a,
isempty : 'b -> bool)

An implementation of an int Stack in terms of the built-in type list can be given as

stack(value = (1,2,3], empty = (1, push = op ::,
pop = fn xs => (hd xs,tl xs), top = hd, isempty = null}

An alternative implementation of Stack could be given, among others, based on arrays. Different imple-
mentations could then be combined in a list of stacks. To facilitate dynamic dispatching, constructors ol
stacks of different implementations can be provided together with stack operations that work uniforml.

80

across implementations. These "outer" operations work by opening the stack, applying the intended "inner"
operation, and encapsulating the stack again, for example

fun makeliststack xs = stack{value = xs, empty = [] ,push = op ::,
pop = fn xs => (hd xs,tl xs), top = hd, isempty = null}

fun makearraystack xs = stack{...)
fun push a (stack{value = v, push = pu, empty = e,

pop = po, top = t, isempty =i) =
stack{value = pu(a,v), push = pu, empty =e,

pop = po, top = t, isempty = i)
map (push 8) [makeliststack [2,4,6], makearraystack [3,5,7]]

4 Type-Theoretical Aspects
A deterministic type inference system for our language is given in the appendix; it leads directly to a syn-
tactically sound and complete type reconstruction algorithm to compute principal types. Our type system is
semantically sound with respect to a standard denotational semantics. Moreover, it is a conservative exten-
sion of ML. That is, for a program in our language whose declarations introduce no existentially quantified
type variables, our type reconstruction algorithm and the ML type reconstruction algorithm compute the
same type. A comprehensive treatment of polymorphic type inference with existential types is found
in [LA92].

5 Related Work

Hope+C
The only other work known to us that deals with Damas-Milner-style type inference for existential types
is [Per9O]. However, the typing rules given there are not sufficient to guarantee the absence of runtime type
errors, even though the Hope+C compiler seems to impose sufficient restrictions. The following unsafe pro-
gram, here given in ML syntax, is well-typed according to the typing rules, but rejected by the compiler:

datatype T = K of ''a
fun f x = let val K z = x in z end
f(K 1) = f(K true)

XML+

The possibility of making ML structures first-class by implicitly hiding their type components is discussed
in [MMM91] without addressing the issue of type inference. By hiding the type components of a structure,
its type is implicitly coerced from a strong sum type to an existential type. Detailed discussions of sum types
can be found in [Mac86] [MH88].

Haskell with existential types

Existential types combine well with the systematic overloading polymorphism provided by Haskell type
classes [WB891; this point is further discussed in [L091]. Briefly, we extend Haskell's data declaration in a
similar way as the ML datatype declaration above. In Haskell [HPW911, it is possible to specify what type
class a (universally quantified) type variable belongs to. In our extension, we can do the same for existen-
tially quantified type variables. This lets us construct heterogeneous aggregates over a given type class.

Dot notation

MacQueen [Mac86] observes that the use of existential types in connection with an elimination construct
(open, abstype, or our let) is impractical in certain programming situations, often, the scope of the
elimination construct has to be made so large that some of the benefits of abstraction are lost. A formal treat-
ment of the dot notation, an alternative used in actual programming languages, is found in [CL90]. An ex-
tension of ML with an analogous notation is described in [La921.

81

Dynamics in ML
An extension of NI with objects that carry dynamic type information is described in [LM91]. A dynamic
is a pair consisting of a value and the type of the value. Such an object is constructed from a value by ap-
plying the constructor dynamic. The object can then be dynamically coerced by pattern matching on both
the value and the runtime type. Existential types are used to match dynamic values against dynamic patterns
with incomplete type information. Dynamics are useful for typing functions such as eval.. However, they
do not provide type abstraction, since they give access to the type of an object at runtime. It seems possible
to combine their system with ours, extending their existential patterns to existential types. We are currently
investigating this point.

Acknowledgments
We would like to express our thanks to Ben Goldberg, Fritz Henglein, Ross Paterson, Nigel Perry, Benjamin
Pierce, and Phil Wadler, for helpful suggestions and stimulating discussions.

A Formal Discussion of the Extended Language
In this appendix, we describe the formal language and the type system underlying our extension of ML. The
typing rules and auxiliary functions translate to the type reconstruction algorithm given below.

A.1 Syntax

Language syntax

Identifiers x

Constructors K

Expressions e ::= xl (e 1, e2) le e' I Xx.e I let x= e in e' I

data Va-....anX in eIKIis K let Kx= e in e'

In addition to the usual constructs (identifiers, applications, X-abstractions, and let expressions), we intro-
duce desugared versions of the ML constructs that deal with datatypes. A data declaration defines a new
datatype; values of this type are created by applying a constructor K, their tags can be inspected using an
is expression, and they can be decomposed by a pattern-matching let expression. The following example
shows a desugared definition of ML's list type and the associated length function.

datatypes. A data declaration defines a new datatype; values of this type are created by applying a con-
structor K, their tags can be inspected using an is expression, and they can be decomposed by a pattern-
matching let expression. The following example shows a desugared definition of ML's list type and the
associated length function.

data Va. (go.Nil unit + Cons ax 1) in
let length = fix Xlength. Xxs.

if (is Nil xs)
0
(let Cons ab = xs in + (length(snd ab)) 1)

in
length (Cons (3, Cons (7,Nil ())))

Type syntax

Type variables Cc

Skolem functions K

82

Types :r unitlboollal-T X 2 1T--4T' I K(TI1 IT) n x

Recursive types X ::= gP3.KTjl1 +... + Kmrlm where Ki#Kj if i ej

Existential types 1" ::= 3. I t

Type schemes a Va.a I T

Assumptions a ::= c/x I Va 1 ... an. X/K

Our type syntax includes recursive types X and Skolem type constructors K; the latter are used to type iden-
tifiers bound by a pattern-matching let whose type is existentially quantified. Explicit existential types
arise only as domain types of value constructors. Assumption sets serve two purposes: they map identifiers
to type schemes and constructors to the recursive type schemes they belong to. Thus, when we write A (K),
we mean the a such that a = Va* +KrI +.... Further, let Y [Krl] stand for sum type contexts

such as K171 +... +Km7Im, where Ki = K and "li = rT for some i.

A.2 Type Inference

Instantiation and generalization of type schemes

Va .., an. t _> "' iff there are types t1P ... tn such thatt' = c [T1 /a 1 , ... , rn/aIn]

3al...an*x T:5 "' iff there are types tr1 "Tn such that t' = T ['i/aI ... "•n/0Ln]

gen (A,t) = V(FV(c) \ FV(A)).t

skolem (A, 3y 1... yn.t) = t [Ki (a, ... ctk)/i] where K1 "" Kn are new Skolem type

constructors such that {Ic 9Kn} r) FS (A) = 0, and

{C5lj.....Okl = FV(3y,...yn.T) \FV(A)

The first three auxiliary functions are standard. The function skolem replaces each existentially quantified
variable in a type by a unique type constructor whose actual arguments are those free variables of the type
that are not free in the assumption set; this reflects the "maximal" knowledge we have about the type repre-
sented by an existentially quantified type variable. In addition to FV, the set of free type variables in a type
scheme or assumption set, we use FS, the set of Skolem type constructors that occur in a type scheme or
assumption set.

Inference rules for expressions

The first five typing rules are essentially the same as in [CDDK86].

(VAR) (x)
AF xt

(PAIR) A l ei• A F e2" :T2

A ý (ele2)'IXr2

83

(APPL) A [e e'

A Fx/]• e e'"

(ABS) A t'/xl e:¶
A kx. e -V--ý r

A - e: T A [gen (A, T)/x] I- e' : T'
A)- let x=e in e':¶'

The new rules DATA, CONS, TEST, and PAT are used to type datatype declarations, value constructors, is
expressions, and pattern-matching let expressions, respectively.

a = Va I..an' go.iKlrI1 + ... +Kmilm
FV(a) = 0 A [G/KI 0/Km. l- e : t

A -data o in e : T

The DATA rule elaborates a declaration of a recursive datatype. It checks that the type scheme is closed and
types the expression under the assumption set extended with assumptions about the constructors.

(CONS) A(K) -t(g. Y [Kril I1 [got3.Z [Kii]/031 _<r

A 1- K: t--*t gP.I[K11)

The CONS rule observes the fact that existential quantification in argument position means universal quan-
tification over the whole function type; this is expressed by the second premise.

A (K) > go. Y_. [Krl]
A I- is K: (p3.Y-[KTjl) -->bool

The TEST rule ensures that is K is applied only to arguments whose type is the same as the result type of
constructor K.

A F- e : ±3.Y- [Kill FS(CO') FS(A)
A [gen (A, skolem (A, j [gto. I [Kil]/13]) Ix] F- e' : V(PAT)

A F- let Kx=e in e':x'

The last rule, PAT, governs the typing of pattern-matching let expressions. It requires that the expression
e be of the same type as the result type of the constructor K. The body e' is typed under the assumption set
extended with an assumption about the bound identifier x. By definition of the function skolem, the new
Skolem type constructors do not appear in A; this ensures that they do not appear in the type of any identifier
free in e' other than x. It is also guaranteed that the Skolem constructors do not appear in the result type V.

Relation to the ML Type Inference System

Theorem I (Conservative extension] Let Mini-MIL' be an extension of Mini-NIL with recursive datatypes,
but not with existential quantification. Then, for any Mini-NL' expression e, A - e: T iff
A F-Mini-MLU e : T.

Proof: By structural induction on e.

Corollary 2 (Conservative extension] Our type system is a conservative extension of the Mini-ML type sys-

84

tern described in [CDDK86], in the following sense: For any Mini-ML expression e, A F- e: t iff
A [-Mini-ML e : T.

Proof: Follows immediately from the previous theorem.

A.3 Type Reconstruction

The type reconstruction algorithm is a straightforward translation from the deterministic typing rules, using
a standard unification algorithm [Rob65I [MM82]. We conjecture that its complexity is the same as that of
algorithm W.

Auxiliary functions

In our algorithm, we need to instantiate universally quantified types and generalize existentially quantified
types. Both are handled in the same way.

instv (Va 1 ... c t.T) = T [13/al ... , P3/a.] where I31 ..., 1n are fresh type vari-

ables

inst3 (3tl...•Xn.) = [I3 1 /al,..... n/a] where 3 1'. .. " are fresh type vari-

ables

The functions skolem and gen are the same as in the inference rules, with the additional detail that skolem
always creates fresh Skolem type constructors.

Algorithm

Our type reconstruction function takes an assumption set and an expression, and it returns a substitution and
a type expression. There is one case for each typing rule.

TC (A, x) = (Id, instv (A (x)))

TC(A, (e 1, e2)) = let (S1,t11) = TC(A, el)

(S2, 2) = TC (SIA, e2)

in (S 2 S 1,S 2 Tl1 X 1t2)

TC (A, ee') = let (S, t) = TC (A, e)

(S', r') = TC(SA, e')

I0 be a fresh type variable
U = mgu (S',r, r:'--)

in (US'S, UP)

TC (A, Xx. e) = let 0 be a fresh type variable

(S, r) =TC (A [13/x, e)

in (S,So-•t)

TC(A, let x= e in e') = let (S,) =TC(A,e)

(S',t1') = TC (SA Igen (SA, t)/x], e')

in (F'S,tr')

85

TC(A, data ar in e) = let Va 1 ... a4.±aI.KlT11+... +Kmlm =O in

if FV(a) = 0 then

TC (A [o/K 1, o/Kmi, e)

TC (A,K) =let T = instv (A (K))
+p + +... = T

in (Id, (inst3 (T)) -- ")

TC(A, is K) =let t=instV(A (K))

in (Id, T --) bool)

TC(A, let Kx=e in e')= let t=instv (A (K))

p4L.... +KT1+... =t1
(S, t) = TC (A, e)

U= (mgu (t,)) S

TK =skolem (UA, Url)
(S',V') = TC (UA [gen (UA, " K)/x], e')

in

if FS(,r') gFS(S'UA) A

(FS(TK) \ FS(UTf)) n FS(S'UA) •0

then (S'U, t')

Theorem 3 [Syntactic Soundness and Completeness] The type reconstruction algorithm TC is sound and
complete with respect to the type inference relation 1-.

Proof: We extend the proof given in [CDDK86] to deal with the new constructs.

A.4 Semantics

We give a standard denotational semantics. The evaluation function E maps an expression e e Exp to some
semantic value v, in the context of an evaluation environment p e Env. An evaluation environment is a
partial mapping from identifiers to semantic values. Runtime type errors are represented by the special value
wrong. Tagged values are used to capture the semantics of algebraic data types.

We distinguish between the three error situations, runtime type errors (wrong), nontermination, and a
mismatch when an attempt is made to decompose a tagged value whose tag does not match the tag of the
destructor. Both nontermination and mismatch are expressed by I.

Our type inference system is sound with respect to the evaluation function; a well-typed program never
evaluates to wrong. The formal proof for semantic soundness is given bei,,w.

It should be noted that we do not commit ourselves to a strict or non-strict evaluation function. There-
fore, our treatment of existential types applies to languages with both strict and non-strict semantics. For
either case, appropriate conditions would have to be added to the definition of the evaluation function.

86

Semantic domain

Unit value U = {unit} _L

Boolean values B = { false, true } .

Constructor tags C

Semantic domain V=U+B+ (V-4V) + (VxV) + (CxV) + {wrong}

In the latter definition of V, + stands for the coalesced sum, so that all types over V share the same -L.

Semantics of expressions

The semantic function for expressions,

E : Exp -4 Env ---) V,

is defined as follows:

Elx] p = p(x)

E[(el,e2)j p = (E[el1 p,Eje 2J p)

E[ee'] p = if E[ej p V - Vthen

(E e] p) (E[e'I p)

else wrong

ELXx.e] p = Xvc V.E e](p[v/x])

E[let x=e in e'] p = E[e'] (p[EI e] p/x])

EIdata a in ej p = E[e] p

ElK] p = Xv r V. (K,v)

Elis K] p = Xvr V. if vy {K} xVthen true else false

E[let Kx=e in e'] p = E e'] (p[if E[e) pe {K} xVthen

snd(E[e] p)

else J./x])

Semantics of types

Following [MPS86], we identify types with weak ideals over the semantic domain V. A type environment
W TEnv is a partial mapping from type variables to ideals and from Skolem type constructors to functions
between ideals. The semantic interpretation of types,

T : TExp ---) TEnv -45 (V)

is defined as follows.

87

T unit 4J1 = U

T boolJ] • = B

T[aJ, = W(a)

T[Jrxl2]J = T[r1 JW xT[t2il

T[- -->'C]• = T[rJw -- T [Vf'I

T[K (t 1V)V = (W (K)) (T['Cl, T['C n]W)

T(go.Y Kiqli I W g(XI E 3 (V). Y {Kil X r[1 il (W /1[/])

T['V•.al =W r) Ie (V).T[aI (W[I/a])
le 91

T [3(.11W =U LIE 3(V).T[Tl](M[I/a])
I½ 9t

The universal and existential quantifications range over the set 91 c Z (V) of all ideals that do not contain
wrong. Note that the sum in the definition of recursive types is actually a union, since the constructor tags
are assumed to be distinct. It should also be noted that our interpretation does not handle ML's nonregular,
mutually recursive datatypes; it appears that the PER model described in IBM92] would provide an ade-
quate interpretation.

Theorem 4 The semantic function for types is well-defined.

Proof: As in [MPS86]. We observe that X1 c- (V) . , {Ki} x T[tqi (W[I/la]) is always contrac-
tive, since cartesian product and sum of ideals are contractive; therefore, the fixed point of such a function
exists.

Lemma 5 Let W be a type environment such that for every a E Dom W, wrong 4E W (a) . Then for every
type scheme a, wrong e T [a I w .

Proof: By structural induction on a.

Lemma 6 (Substitution] T [o'/a]] , = TI] (a' [T Wa] e/a]).

Proof: Again, by structural induction on a.

Definition 1 [Semantic type judgment] Let A be an assumption set, e an expression, and a a type scheme.
Wedefine kP, W A as meaning that DomA g Domp and forevery x r DomA, p (x) E T[A(x)j I ;fur-

ther, we say A k P. . e": Y iff kP, V A implies E e] p E T [a] W ; and finally, A k e: a means that

for all p E Env and W e TEnv we have A kP, W e :a.

Theorem 7 [Semantic Soundness] If A I- e : " then A I- e : T.

Proof: By induction on the size of the proof tree for A I- e : T. We need to consider each of the cases given
by the type inference rules. Applying the inductive assumption and the typing judgments from the preceding

88

steps in the type derivation, we use the semantics of the types of the partial results of the evaluation. In each

of the cases below, choose xV and p arbitrarily, such that ýP, WA. We include only the nonstandard cases.

Lemma 6 will be used with frequency.
A -data Val...n.. 1.l 1 + ... +Kmlm in e : -T

The premise in the type derivation is A [f/K 1, ... I o/Kin] F- e : T, where

0 = Val '... an. Ip. K, 71, + ... + Kmrlm. Since by definition, kP, WA [/K, ... , O/KmI, we can

use the inductive assumption to obtain E [data Vacz... an.X in e I p = E [e I p E T [rT I W .

A I- K: r -- pL13.[(Krl]

The last premise in the type derivation is il [t13. Z (Kl 1 /13] < 5, where 71 = 3y1 ... ,y- t. By defini-

tion of instantiation of existential types, T = •t [E/yTj .t13. [Kij]/131 for some types ti,.... t,.

First, choose an arbitrary V E T [tic N and a finite a < v. Now,

ae (T[t['./yj,gpt1.Z[Krl]/p] JW)o

=(r[I [g13.Z [Kill/P31] I(W[[r -, il W/])) 0
_ U (T([t [TI/3. (K[ilI/p]I (W [Jj/Tjl))0

J1 J. E 9

= j (T [[pp13.X[KTlI/1311 (' [Jjlyj]))0

J1, ."", J. E 9t

= (T pr Ufz1 T.[Kil]I 3])°.

Hence, v = UI [al a finite and a5 <v} I T[il [p13.Y [KlI/13] W , by closure of ideals under
limits. Consequently,

(K,v)cE {K} xT[rl [gp3.Y.[Knl/13]I]V
_c.+ {K} xT [71 [gtp. I[K711]/P3] W +..

=...+ {K} ×T~ri]] (W[Tjgp3.Y_[Krjl]WI/p]) +...

= T[•±13.r [Krj]I! .

Hence E[KJ p E T[jt --- L13.1:[Krljj] .

A -- is K: (p•3. [KIl]) --- bool
Choose an arbitrary v e T I gx13. Y.[KlK I W . Clearly, (E [is K P)v E B, whence
Elis KI p r T[(gp3.Y[Krj])--bool]N .

A let Kx=e in e':•t'
We follow the proof in [MPS86]. The first premise in the type derivation is A H- e : t, where

"t = p P3. I[Krl] and Ti = 3y 1... y.n . Let {a1,, okI = FV(-) \ FV(A) . Then, for every

!1, ... ' Ik E 3 (V), 1P, v [1/a1A holds, since none of the ai's are free in A.

Let v = E lie I p ; by the inductive assumption, v r T [I -11 (W [Ii/Cni]) . Consequently,

y 9t T[UI: (W ([i/oxi])

89

n r TEg13.I[KillI (V [lil/ail)11, lk E9

- ... + {K} x r Ti1rlJ (,4 [li/oy T[tI (4 [I/L])/131) +/PD
I, le E9t

First, consider the case fst (v) # K. Then, by definition, E [let K x = e in e' l = -L, and

we are done, since -L E T itIN' I \ .

In the more interesting, second case, fst (v) = K. Then

snd (v) E n [j T [t] (W [li/ai, Yj/Y 1 , T1J11] (W [Il/all /P3D)
11 ,Ik 9t]P.JE 9t

Let cal ah' h _ k, be those variables among czl,, cak that are free in r [1/13o.

We now choose a finite a such that a < snd (v) , thus

a• r) U (Tit [t/13]j (W, [[i/aJj/7j]))
I1, ... ' 1 E t 1, ...'. J C9

By definition of set union and intersection, there exist functions fl, "- E 3 (V)h 3 3 (V),

such that

a e n (T [I [t/13o]I (N [Ii/~,f.(.11, II lE9tif(1,..
d / D)0

Q r) T[I [c/131] (N[li/° i, [j ,h)1Yj])
= Ih rc 9 1h / , t / 1 3 h) 1

n[V T[c [KJ(cy1 Zh)/Yj, / 13]I (W [Ii/aj/•1)

= T[Vcal... ![.•[(al, ... a.) l)yjrp I1•] (W V[-/K.1)

= T"[gen (A, skolem (A, rl [,1/o3)] (WV [j/K])
ii

assuming that the ic's are the ones generated by skolem (A, 71 ['r/13).

Since by definition of skolem, none of the Ki. 's are free in A, [- p, W •/K1 A holds and we can extend

A and p, obtaining k=p [a/x], W [f/I.]A [gen (A, skolem (A, 1 [t/13))/x].

We now apply the inductive assumption to the last premise,

A [gen (A, skolem (A, 71 ['r/13])V /x] F- e' •i',

and obtain

E[e'] (p[a/xI) E T [l1'I (W [fj/K.]) = T[,E']IW,

since FS (-T') g FS (A) . Finally,

Ellet Kx=e in e' Ip =EIe'I (p[snd(E[e]p),'xl)

UI {E [e']l (p [a/x]) Ia finite and a snd (E I eI p)}

by the continuity of E. The latter expression is in T ['r' I 'V by the closure of ideals under limits.

U

Corollary 8 [Semantic Soundness] If A I- e : 1, then E [e I p # wrong.

Proof: We apply Lemma 5 to the previous theorem.

90

References
[BM921 K. Bruce and J. Mitchell. PER models of subtyping, recursive types and higher-order

polymorphism. In Proc. 18th ACM Symp. on Principles of Programming Languages, pages
316-327, January 1992.

[CDDK86I D. Clement, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative language:
Mini-ML. In Proc. ACM Conf. Lisp and Functional Programming, pages 13-27, 1986.

[CL90] L. Cardeli and X. Leroy. Abstract types and the dot notation. In Proc. IFIP Working
Conference on Programming Concepts and Methods, pages 466-491, Sea of Galilee, Israel,
April 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
ACM Computing Surveys, 17(4):471-522, Dec. 1985.

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In Proc. 9th
Annual ACM Symp. on Principles of Programming Languages, pages 207-212, Jan. 1982.

[HPW911 P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language Haskell: a
non-strict, purely functional language, version 1.1. Technical Report YALEU/DCS/RR-777,
Dept. of Computer Science, Yale University, New Haven, Conn., August 1991.

[LA92] K. Laufer. Polymorphic Type Inference and Abstract Data Types. PhD thesis, New York
University, Department of Computer Science, 1992. In preparation.

[LM911 X. Leroy and M. Mauny. Dynamics in ML. In Proc. Functional Programming Languages
and Computer Architecture, pages 406-426. ACM, 1991.

[L091] K. Llufer and M. Odersky. Type classes are signatures of abstract types. In Proc. Phoenix
Seminar and Workshop on Declarative Programming, November 1991.

[Mac86l D. MacQueen. Using dependent types to express modular structure. In Proc. 13th ACM
Symp. on Principles of Programming Languages, pages 277-286. ACM, Jan. 1986.

[MH881 J. Mitchell and R. Harper. The essence of ML. In Proc. Symp. on Principles of Programming
Languages. ACM, Jan. 1988.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4(2):258-282, Apr. 1982.

[MMM91] J. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML modules with
subtyping and inheritance. In Proc. ACM Symp. on Principles of Programming Languages,
Jan. 1991.

[MP88] J. Mitchell and G. Plotkin. Abstract types have existential types. ACM Trans. on
Programming Languages and Systems, 10(3):470-502, 1988.

[MPS861 D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types.
Information and Control, 71, 1986.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[Per9O] N. Perry. The Implementation of Practical Functional Programming Languages. PhD thesis,
Imperial College, 1990.

[Rob65] J. Robinson. A machine-oriented logic based on the resolution principle. J. Assoc. Comput.
Mach., 12(1):23-41, 1965.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th Annual
ACM Symp. on Principles of Programming Languages, pages 60-76. ACM, Jan. 1989.

91

Dynamic Typing
in Polymorphic Languages

Martin Abadi Luca Cardelli Benjamin Pierce Didier R6my

Systems Research Center LFCS INRIA Rocquencourt

Digital Equipment Corporation University of Edinburgh

1 Introduction subtyping.
Drawing from the experience with explicit polymor-

Dynamic types are sometimes used to palliate deficien- phism, we consider languages with implicit polymor-

cies in languages with static type systems. They can be phism in the ML style. The same ideas can be used,

used instead of polymorphic types, for example, to build with some interesting twists. In particular, we are led

heterogeneous lists; they are also exploited to simu- to introduce tuple variables, which stand for tuples of

late object-oriented techniques safely in languages that type variables.
lack them, as when emulating methods with procedrres. in addition to [1], several recent studies have con-

But dynamic types are of independent value, even when sidered languages with dynamic types [14, 17, 23]. The

polymorphic types and objects are available. They pro- work most relevant to ours is that of Leroy and Mauny,

vide a solution to a kind of computational incomplete- who define and investigate two extensions of ML with

ness inherent to statically-typed languages, offering, for dynamic types. We compare their designs to ours in

example, storage of persistent data, inter-process com- section 6.

munication, type-dependent functions such as print, Section 2 is a brief review of dynamic typing in

and the oval function. simply-typed languages, based on [1]. Section 3 con-

Hence, there are situations in programming where siders the general case of adding dynamic typing to a

one would like to use dynamic types even in the pres- language with higher-order polymorphism [11]. An al-

ence of arbitrarily advanced type features. In this pa- gorithmic formulation of the general framework is ob-

per we investigate the interplay of dynamic typing with tained in section 3.5 by restricting polymorphism to the

polymorphism. Our study extends earlier work (see (1]) second order and placing conditions on the patters used

in allowing polymorphism, but keeps the same basic in typecase expressions. Sections 4 and 5 discuss ab-

language constructs (dynamic and typecase) and the stract data types and subtyping, respectively. Section 6

same style. deals with a language with implicit polymorphism.

The interaction of polymorphism and dynamic types
gives rise to problems in binding type variables. We

find that these problems can be more clearly addressed 2 Review
in languages with explicit polymorphism. Even then,
we encounter some perplexing difficulties (as indicated The integration of static and dynamic typing is fairly

in [11). In particular, there is no unique way to match straightforward for monomorphic languages. The sim-

the type tagging a dynamic value with a typecasa pat- plest approach introduces a new base type Dynamic

tern. Our solution consists in constraining the syntax along with a dynamic expression for constructing values

of typecase patterns, providing static guarantees of of type Dynamic and a typecase expression for inspect-

unique solutions. The examples we have examined so ing them. The typechecking rules for these expressions

far suggest that our restriction is not an impediment in are:

practice. This solution applies also to languages with r ý- aET (DYN-I)

abstract data types, and it extends to languages with r I- dynamic(a:T) E Dynamic

r I- dEDynamic
r,z:P F- bET r FeET (DYN-E)

r F typecase d of (z:P) b else e E T

The phrases (z:P) and else are branch guards; P is
a pattern-here, just a monomorphic type; b and c

are branch bodies. For notational simplicity, we have

92

considered only typecase expressions with exactly one dynApply =
guarded branch and an else clause; typecase involv- A(dt:Dynamic) A(da:Dynamic)
ing several patterns can be seen as syntactic sugar for typecase df of
several nested instances of the single-pattern 1typecase. {U,V Cf :U---OV)

In the intended implementation, the compilation of typecase da of
a dynamic is a pair consisting of a value and its type: {} (a:U)

dynamic(f (a) :V)
c ompile[dynamic(a:A)] else ...

"<'compile[aj', 'graba]A'>" else ...

The double quotes here indicate that the result of Here U and V are pattern variables introduced by the
compile is a run-time structure; single quotes mark first guard. In this example, if the arguments are:
substructures to be built at compile time. The keyword
"grab" indicates a metalevel shift: a compile-time data df = dynamic((A(x: Int)x+2) : Int-Int)
structure or routine is inserted into the run-time value. da = dynamic (S:Int)
Because of this, Dynamic is particularly easy to imple-
ment in a bootstrapped compiler, where the rrn-time then the typecase guards match as follows:
and compile-time structures coincide. Tag: Int---Int

The typecase construct uses the compiler's type- Pattern: U-*V
match routine to compare the tag of a given dynamic Result: {U = Int, V = Int)
to the branch guard:

compile[1typecase d of (x:A) b else a] = Tag: Int
"let d = 'compile Ed] ' in Pattern: Int
if 'grab[typematch]' ('grab[A]') (snd(d)) Result: {}

then push[x=fst(d)]; 'compile[b]' and the result of dynApply is dynamic(7 : Int).
else 'compile [e]" A similar example is the dynamic-composition func-

In languages with subtyping, it is common to use a tion, which accepts two Dynamic arguments and at-
subtype test in the typecase construct to give a less tempts to construct a Dynamic containing their func-
restrictive matching rule, allowing a tag to be a sub- tional composition:
type of the guard type instead of requiring that the dynCompose =
two match exactly. A(df:Dynamic) A(dg:Dynamic)

Constructs analogous to dynamic and typecase typecas. df of
have been provided in a number of languages, including fUe Cfe:U-'d+V)
Simula-67 [2], CLU [18], Cedar/Mesa [16], Amber [3], typecase dg of
Modula-2+ [22], Oberon [25], and Modula-3 (9]. fT} (g:T-U)

These constructs have surprising expressive power; dynamic(fog:T-V)
for example, fixpoint operators can be defined at ev- else ...

ery type already in a simply typed lambda-calculus ex-
tended with Dynamic [1]. Important applications of
dynamics include persistence and inter-address-space
communication. For example, the following primitives 3 Explicit Polymorphism
provide input and output of a dynamic value from and
to a stream: This formulation of dynamic types may be carried over

almost unchanged to languages based on explicit poly-
extern E eriterxDynamic--Unit morphism [11, 21]. For example, the following func-
int;ern e Reader-iDynamic tion checks that its argument df contains a polymor-

Moreover, dynamics can be used to give a type for an phic function f taking elements of any type into Int. It

eval primitive (12, 20]: then creates a new polymorphic function that accepts
a type and an argument of that type, instantiates f

eval E Exp--+Dynamic appropriately, applies it, and squares the result:

We obtain a much more expressive system by al- squarePolyFun =
lowing typecase guards to contain pattern variables. A(dl :Dynamic)
For example, the following function takes two Dynamic typecase df of
arguments and attempts to apply the contents of the {} (f:V(Z)Z--Int)
first (after checking that it is of functional type) to the A)(W) A(x:W) f [W] (x)*f [W] Cx)
contents of the second: else A(W) A(x:w) 0

93

Here the type abstraction operator is written A. Tag: Int
Type application is written with square brackets. The Pattern: F(W) (which reduces to W)
types of polymorphic functions begin with V. For exam- Result: {W = Int}
ple, V(T)T--T is the type of the polymorphic identity and the result of the application dynkppLy2(df)(da) is
function, A(T) A(x:T) x. dynamic(id[Int](3) : Int).

3.1 Higher-order pattern variables 3.2 Syntax

First-order pattern variables, by themselves, do not give
us sufficient expressive power in matching against poly- We now formalize dynamic types within the context ofmorphic types. For example, we might like to generalize a higher-order polymorphic A-calculus, F,., [11]. The
the dynamic application example from section 2 so that syntax of F,,, with type Dynamic is given in Figure 1.it can accept a polymorphic function and instantiate it In examples we also use base types, cartesian prod-appropriately before applying it: ucts, and labeled records in types and patterns, but weomit these in the formal treatment.
dynApply2ltd = We regard as identical any pair of formulas that dif-

A(df :Dynamic) A(da:Dynamic) fer only in the names of bound variables. For brevity,
typecase df of we sometimes omit kinding declarations of the form

{} (f:V(Z)?---?) ": Type" and empty pattern-variable bindings. Also,
"typecase da of it is technically convenient to write the pattern vari-

{W} (a:W)) ables bound by a typecase expression as a syntactic
dynamic(f [W) (a):?) part of the pattern, rather than putting them in front

else ... of the guard as we have done in the examples. Thus,
else dynApply(df)(da) typecase el of {V}(x:T)e2 else e3should be read

But there is no single expression we can fill in for the do- formally as typecase el of (x:{V:Type}T)e2 else
main of f that will make dynApply2ltd apply to both: e3.

df = dynamic 3.3 Tag Closure
(AMZ) A(x:ZxZ) <snd(x),fst(x)>: 33 g o

da = dyuamic(<3 ,4>: ...) One critical design decision for a programming language

and: with type Dynamic is the question of whether type tags
must be closed (except for occurrences of pattern vari-

df = dynamic((A(Z) A(x:Z--+Z) x): ...) ables), or whether they may mention universally bound
da = dynamic((A(x:Int) x): ...) type variables from the surrounding context.

In the simplest scenario, dynamic(a:A) is legalThus we are led to introducing higher-order pat- onywetiacosd(tpsibyoymrhc

tern variables, which range over "pattern contexts"- only when A is a closed (but possibly polymorphic)

patterns abstracted with respect to some collection Of type. Similarly, we would require that the guard in

type variables. These suffice to express polymorphic a typecase expression be a closed type.

dynamic application: If the closure restriction is not instituted, then types
must actually be passed as arguments to polymorphic

dynApply2 = functions at run time, so that code can be compiled for
A(df :Dynamic) A(da:Dynamic) expressions like:

typecase df of
{F,G} (f:VCZ)F(Z)---G(Z)) A(X) A~x:X) dynamic(<x,x>:ZxX).

typecase da of where the type I x X must be generated at run time. For
{W} (a:F(W)) languages such as ML, where type information is not re-

dynamic (f [W] (a):G(N)) tained at run time, the closure restriction becomes es-
else ... sential (see section 6). For now, we consider the general

else dynApply(df) (da) case where tags may contain free type variables.

For example, if:

df = dynamic(id:V(A)A--*A) 3.4 Definiteness

da = dynamic(3:Int) The most simple-minded formulation of higher-order

then the typecase expressions match as follows: pattern variables may seem to provide adequate expres-
sive power, but it is not sufficiently constrained to lead

Tag: V(A)A-,A Lo a viaLle lauguage design. The problem is that there
Pattern: V(Z)F(Z)--G(Z) is no guarantee of unique matches of patterns against
Result: {F =A(I)I, G =A(I)X) tags. For example, when the pattern F(Int) is matched

94

K ::= Type kind of types
I K-'K kinds of type operators

T ::= A type variables
[T--T function types

V(A: K)T quantified types
I A(A: K)T type operators
I T(T) application of a type operator
I Dynamic the dynamic type

P {Vi: K,..., V,,: K,} T patterns

e z variables
A(z T)e abstraction
e(e) application
A(A: K)e type abstraction

I e[T] type application
dynamic(e : T) tagging
typecase e of (z : P) e else e tag matching

Figure 1: Syntax of F, terms

against the tag Bool, the pattern variable F is forced to since, when the scope of X is narrower than that of F,
be A(I)Bool. But when the same pattern is matched we can only match the tag V(Y)Y-Y by instantiating F
against the tag Int, we find that F can be either A(X)I to A(C)C--C.
or A(M)Int. There is no reasonable way to choose.
Worse yet, consider F(W) or F(W--.Int) for a pattern Valid: {F} (V(X)FC())-F(A)

variable W. since the first occurrence of F determines its value.
These problems compel us to introduce restrictions Valid: {FV} (VCM)FCM))-F(V)

on the form of patterns. We may require that a pattern
matches a tag in at most one way at run time, and fail since F can be matched first and then considered "al-
otherwise. But this leads to unpredictable matching ready bound" at the defining occurrence of V.
failures. Therefore we prefer a stronger condition.

Informally, we want to allow only patterns that Invalid: {F,G} V(X)F(G(X))--(F(X))
match each tag in at most one way. This condition since neither F nor G can be considered "already bound"
is called definiteness. For example, assume that the unless the other is bound first.
type variables A and B and the operator variable H are Note that definiteness of patterns cannot be checked
bound in the current context, and consider the follow- locally. For example,
ing patterns: Valid: {F} F(Int)--'F(Bool)

Valid: {V} B(V) is definite, although neither occurrence of F would be

since, at run time, if V appears in the expression to definite in isolation.
The definiteness condition can be formalized, andwhich p is bound, then matching is the usual for first- then one can put a definiteness requirement in the type-

order pattern variables; and otherwise matching leaves checking rule for t~ypecase, so that only programs with

V completely undetermined, and we set it to a new type definite patterns are legal.

constant. Patterns of this form are used in many of our Unfortunately, the notion of definiteness does not

examples, so we want to consider them definite even

though they may sometimes leave V unconstrained, suggest a typechecking algorithm in any straightfor-
ward way. A related problem is that we have no al-

Invalid: (F) F(A) gorithm for the run-time operation of matching pat-
terns against tags. Indeed, it is not known whether

because, for example, it can match the tag A-.A in four the general case of higher-order matching is decidable.
ways, instantiating F to any of: A(C)C--C, A(C)C--A, Even the sccond- and third-order cases, whrse decid-
A(C)A-,C, A(C)A-.A. ability has been established [15, 7, 8], lead to algorithms

too inefficient to be of practical use in implementing
Valid: {F} V(X)F(X) typecase.

95

3.5 Second-order polymorphism make the pattern ordered. We believe that ordered pat-
terns are always definite, and that ordered matching isTo obtain a practical language design, we need a re- correct, that is, it terminates on every input and always

striction of our general treatment for which efficient yields the same solution independently of the order of
typechecking and matching algorithms can be given, variable instantiations. Hence we replace the definite-We begin by considering the fragment of F• with only ness condition with the ordered condition in typecheck-

second-order polymorphism. This restriction is mostly ing, and in evaluation we adopt ordered matching. We

a matter of convenience, and it seems possible that the omit a detailed description of ordered matching; sec-

approach described below applies to the full F,. tion 6.3 contains a similar algorithm in a somewhat

The syntax of System F (the second-order polymor- different context.

phic lambda-calculus) with Dynamic is given by the fol-

lowing restriction of F, with Dynamic. We show only
the lines that differ. 4 Abstract Types

K ::... The interaction between the use of Dynamic and ab-
I Type-K type operators stract data types gives rise to a puzzling design issue:

should the type tag of a dynamically typed value con-
T ... taining an element of an abstract type be matched ab-

V(A)T quantified types stractly or concretely? There are good arguments for
A(A)T type operators both choices:

* Abstract matching protects the identity of "hid-
P ::- ... den" representation types and prevents acciden-

tal matches in cases where several abstract types
e ... happen to have the same representation.I A(A)e type abstraction] type a Transparent matching allows a more permissive

style of programming, where a dynamically typed
Here, kinds other than Type are used only to specify the value of some abstract type is considered to be a
functionality of pattern variables; abstractions and ap- value of a different version of "the same" abstract
plications at the level of types are used only to describe type. This flexibility is critical in many situa-
patterns. Since every kind has the form tions. For example, a program may create disk

files containing dynamic values, which should re-
Type-.... Type, main usable even after the program is recompiled,

n or two programs on different machines may want
to exchange abstract data in the form of dynam-

we can simply say that a pattern variable with this kind ically typed values.

has arity n.

A pattern { V1 : K 1,..., V, : K,} T is ordered if By viewing abstract types formally as existential
there is some total ordering < of the pattern variables types '1191, we can see exactly where the difference be-
Vi, .-. ., Vn such that each Vi has a defining occurrence, tween these two solutions lies and suggest a generaliza-
that is, a subterm occurrence U _ Vi A1 ... AP in T tion of existential types that supports both. (Existen-
such that: tial types can in turn be coded using universal types;

with this coding, our design for dynamic types of the1. U does not appear in an argument to a pattern previous sections yields the second solution.)

variable Vj where Vj > Vi (i.e., there is no occur- To sexistelds theseo solution.)

rence U' V, Q with U a proper subphrase of inTo add existential types to the variant of F,, defined
eU' ain the previous section, we extend the syntax of types

U' and Vj Ž Vi); and terms as in Figure 2.
2. Vi is fully applied (i.e., the arity of Vi is p); The typechecking rules for pack and open are:

3. the Ai's are pairwise distinct; and S =6 3(A : K) T r F- e E [R/A]T (PACK)
r I- (pack e as S hiding R) E S

4. all of the Aj's have narrower scope than Vi (i.e.,
A, 9 FV(T)). r F e 3(A : K) S

Note that this condition can be checked statically. A 0 FV(T) r, A : K, z : S F- b E T (OPEN)
Ordered matching is a matching algorithm for or- r F- (open e as [A, z] in b) E T

dered patterns; given an ordered pattern, this algorithm A typical example where an element of an abstract type
instantiates variables according to one of the orders that is packed into a Dynamic is:

96

T
3(A : K)T existential types

e
pack e as T hiding T packing (existential introduction)
open e as [A, z] in e unpacking (existential elimination)

Figure 2: Extended syntax with existential types

let stackpack = the representation type while a typecase on the latter
pack could not violate the type abstraction.

push = A(s:IntList)
A(i:Int) cons(i) (s),pop = A(s:IntList) cds(s), 5 Subtyping

o =A~s:IntList) car(s),
S= s:IntList) car(s), In simple languages with subtyping (e.g., [3, 9]) it is

as Some(X) natural to extend typecase to perform a subtyping testpush:X->Int->X, instead of an exact match. Consider for example:

pop:X->X, top:X->Int, new:X let dx = dynamic(3:Nat)
hiding IntList in

in typecase dx of
open stackpack as [Stack,stackops] in {} (x:Int) ...
let dstack = else ...

dynamic The first typecase branch is taken: although the tag
(stackops .push(stackops.new)C):Stack) of dx, Nat, is different from Int, we have Iat<Int.

typecase dstack of Unfortunately, this idea runs into difficulties when
(s:Stack) stackops.top(s) applied to more complex languages. In general, there

else 0 does not exist a most general instantiation for pattern

variables when a subtype-match is performed. For ex-
Note that this sort of example depends critically on ample, consider the pattern V--V and the problem of

the use of open type tags. As above, open tags must subtype-matching (Iut--+Nat):_(V-.-V). Both Int--+Int
be implemented using run-time types. The evaluation and Nat-.-Nat are instances of V--+V and supertypes
of pack must construct a value that carries the repre- of Int-4+at, but they are incomparable. Even when
sentation type. the pattern is covariant there may be no most general

We have a choice in the evaluation rule for the open match. Given a pattern V x V, there may be a type
expression: A x B such that A and B have no least upper bound, and

"* We can evaluate the expression open e as (R, z] so there may be no best instt ntiation for V. This can
in b by replacing the representation type variable happen, for example, in a system with bounded quan-

ed tifiers (6, 101, and in systems where the collection of
R by the actual representation type obtained by base types does not form an upper semi-lattice. Linear

patterns (where each pattern variable occurs at most

"* Alternatively, we can replace R by a new type once) avoid these problems, but we find linearity too
constant. restrictive.

Without Dynamic, the difference between these rules Therefore, we take a different approach that works
cannot be detected. But with Dynamic we get different in general and fits well with the language described in

e erwen section 3.2. We intend to extend System F with sub-
behaviors. Since both behaviors are desirable, we may typing along the lines of [5]. In order to incorporate also
choose to introduce an extended open form that pro- the higher-order pattern variables, we resort to power-
vides separate names for the abstract and transparent kinds [4]. The kind structure of section 3.2 is therefore

* versions of the representation type: etne sflos
extended as follows:

r - e E3(H: K) S H i FV(T) K ::= Type
r, H : K, z : S ý- [H/Rib E T (OPEN) I K-.K

r F- (open e as [R, H, z] in b) E T Power(K)(T) (where T: K)
In the body of b, we can build dynamic values with tags Informally, Power(Type)(T) is the collection of all sub-
R or H; a typecase on the former could investigate types of T, and Power(K--*K')(F) is the collection of

97

all operators of kind K--K' that are pointwise in sub- typecase df of
type relation with F. Subtyping (<_) is introduced by {VW} (f:V--.W)
interpreting: typecase da of

{v,<V} (a:V')
A<B : K as A :Power(K)(B), where A, B : K dynamic(f(a) :W)

else ...
F<G :(K-K') as F(X)<G(X) : K', else ...

for all X : K, where F, G: (K- K') With polymorphic tag types, or with polymorphic

The axiomatization of Power(K)(T) [4] is designed to pattern types with only first-order pattern variables,

induce the expected subtyping rules. For example, A: nothing new happens except that the matching and

Power(A) says that A<A. subtype tests must be the adequate ones for polymor-

As in section 3.5, we limit kinds to appear only in phism.
patterns, although we may allow bounded quantifiers The next degree of complexity is introduced by

V(X<T) T' since they can be handled easily. Because higher-order pattern variables. Just as we had V'<V,
of power-kinds, we can now write patterns such as: a subtype constraint between two first-order pattern

variables, we may have F<G: (K--K') for two higher-

typecase dx of order pattern variables FG:(K--K'). As mentioned

{V,W<(VxV)} (X:W) ... above, the inclusion is intended pointwise: F<G iff

(that is: {V:Type, W:Power(Type) (VxV)) (x:W)) F(X)_<G() :K' under the assumption X:K.
else ... Another form of dynamic application provides an

example of higher-order matches with subtyping:
Each branch guard is used in typechecking the cor- typecase df of

responding branch body. The shape of branch guards is {F,G:Type--+Type,V} (f :V(Z<V)F(Z)--G(Z))
{Vi : Pi,..., V. : P.}(z : P) where each Vi may occur typecase da of
in the Pi with j > i and in P. This shape fits within {j<V} (a:F(W))
the normal format of typing environments, and hence dynamic(f [WJ (a) :G(W))
introduces no difficulties for static typechecking. else ...

Next we consider the dynamic semantics of type- else...
case in presence of subtyping. The idea is to preserve
the previous notion that typecase performs exact type Finally, dynamic composition calls for a constraint
matches at run time. Subtyping is introduced as a se- of the form G'<G:
quence of additional constraints to be checked at run
time only after matching. These constraints are eas- tG,H:Type-fType} (f:V(X)G(X)-fH())
ily checked because, by the time they are evaluated, type-.e dg of
all the pattern variables have been fully instantiated typecase dg of
(perhaps to undetermined types, as discussed in sec- (g:V(Y)F(Y)--y'(Y))
tion 3). In the example above, suppose that the tag of dynamic
dx is (Nat x lnt) x lnt; then we have the instantiations (d(Ai(Z) f[Z]ogEZJ)VCM)FCM)-H(M
W = Nat x Int and V = Int. When the matching is else ...

completed, we successfully check that W_(V x V). else ...

Some examples will illustrate the additional flexibil-
ity obtained with subtyping. First we show how to emu- This example generalizes to functions of bounded poly-
late simple monomorphic languages with subtyping but morphic types, such as V(X<A)G(X)--N(X).
without pattern variables, where typecase performs a
subtype test. The first example of this section can be
reformulated as: 6 Implicit Polymorphism

typecase dx of In this section we investigate dynamics in an implic-
{V<Int} (x:V) f[V](x) itly typed language, namely ML. First we show that

else ... the general treatment of dynamics for explicitly typed
languages directly applies to ML, providing explicitly

where f:V(W<Int)V---Int. In this example, the tag of tagged dynamics in an untyped language. This solu-
dx can be any subtype of Int. Note that the assumption tion is not in the spirit of ML, and all the rest of the
V<Int is used statically to typecheck f CV] Wx). section will be devoted to the study of implicitly tagged

The next example is similar to dynApply in sec- dynamics in ML.
tion 2, but the type of the argument can be any subtype In the obvious extension of ML, types can still be
of the domain of the function: inferred for all constructs but dynamics; the user needs

98

to provide type information when creating or reading 6.1 Tuple variables
dynamics. For instance, let us consider the program: Tag instantiation and second-order pattern variables do

twice = dynamic not fit well together. The difficulty comes from the
(A(f) AWx) f(f x):VCA)(A--A)--(A--A)) merging of two features:

First, the type scheme V(A)(A-•A) -- (A--*A) is inferred 9 As in the pattern {F} (f:V(A)F(A)--A), second-
for A(f) AWx) f(f x) as if it were to be let-bound, order pattern variables may depend on universal
Then we check that this type scheme has no free variables.
variables and is more general than the required tag * Tag instantiation requires that if a typecase suc-
V(A) (A--A)--+(A--A). Conversely, when the extraction ceeds, then it also succeeds for a dynamic with
of a value from a dynamic succeeds, it is given the type an argument that has a more general tag. The
scheme of its tag as if it had been let-bound. Thus, tag V(A) (AxuA) -A matches the previous pattern.
all instances of the value can be used with different in- So should the tag VAB) (A xB) -A. But F is not
stances of the tag as in supposed to depend on B!

foo = A(df) Because of tag instantiation, polymorphic pattern vari-
typecase df of ables may always depend on more variables than the

(f :V(A) (A--A)--+(A---4A)) <f succ, f not> ones explicitly mentioned. We capture all variables that
else ... appear in the tag but that do not correspond to vari-

where succ and not are the successor function on inte- ables in the pattern into a tuple of variables P. The de-

gers and the negation function on booleans. pendence of pattern variable F on all universal variables

This works perfectly. However, it requires explicit is written F(P), even though the exact set of variables
type information in dynamic patterns, which is not in in P is not statically known. The tuple variable P will

the spirit of ML. Since the ML typechecker can infer be dynamically instantiated to the tuple of all variables
most general types for expressions, one would expect of the tag not matched with variables of the pattern.

the compiler to tag dynamic values with their principal In particular, if the pattern is F (P; A), then P will never

types. For instance, the user writes contain A.
For instance, the pattern {F} (f:V(A)F(A)--A)

twice = dynamic(A(f) Ax) t f x)) should be written {FJ (f:V(A)F(P;A)--A), so that
tag instantiation is possible. The tag V(A) (AxA)--A

and the dynamic is tagged with V(A) (A-A)--(A-4A). matches this pattern for an empty tuple. The tag
However, there is a difficulty with the program V(A,B)(AxB)--A matches it for a one-element tuple,

namely (B).
apply = dynamicCA(f) A(x) f x) Tuple variables bound in different patterns may be

instantiated to tuples with different numbers of vari-Should the dynamic's tag be (A,B) (A-dB)--f(A---ed, ables, as in the example just given. Because of such size
or VcB,A)(A--h)--(A--B)? As typecase is defined, it considerations, it is not always possible to use a tuple
succeeds if the tag exactly matches the pattern, in- variable as argument to an operator, since it may expect
cluding quantifiers. With implicit tagging, the order an argument of different size. We use tuple sorts in or-
of quantifiers should not matter. der to guarantee that type expressions are well formed.

Moreover, since the tag of t;wice is more general Formally, a typecase with explicit information should
than the pattern of the function foo, an ML program- be written, for instance:
mer would probably expect that twice can be passed
to foo. This is also justified by the fact that the type- {p Tuple,F:p---Type--.Type}
checker could have built a dynamic with a weaker tag, (f:V(P:p,A:Type)F(P;A)--A)
and the typecase would have succeeded. That is, in
ML, the typecase would be expected to succeed if an where F(Ao; Al, ... , A,) stands for a fully applied pat-
instance of the tag matches the pattern. This principle tern variable F(Ao)(A1) ... (A,.); this notation reminds
is called tag instantiation. Dynamics with tag instanti- that the first argument A0 is a tuple. The sort variable
ation but no pattern variables have been implemented p is to be bound at run time. However, it is not neces-
in the language CAML [24]. The dynamics studied by sary to write the sorts in programs since a typechecker
Leroy and Mauny [171 have tag instantiation and first- can easily infer them.
order pattern variables. First-order pattern variables
are not powerful enough to type some reasonable ex- 6.2 Description of the language
amples, such as the applyTwice function shown later.
Below we describe a version of dynamics for ML with We assume given a denumerable collection of tuple
tag instantiation and second-order pattern variables, sorts, written x, ir', etc., and a sort Type. Then the

99

sorts are: imposed on signatures in Standard ML (see section 7.7
of [13]).

k ::r I Type atomic sorts Pattern variables are bound at the beginning of the
K :: k I k -- * K sorts typecase, and their scope is the typecase in which

Types are: they have been introduced. All other free variables are
bound at the beginning of the pattern and their scope

T ::= Dynamic I A I T(T) I T-.T types is the pattern.
P :: Ai,..., A T patterns
S ::= V(A 1 : K 1,.. .,A,, : K,ý) T type schemes Expressions are:

In traditional ML style, we have left quantifiers implicit
in types and hence in patterns. The formation of types, e ::- z I.Mz) e • e
patterns, and contexts is controlled by judgements of I dynamic(e)

the form: typecase e of
{V, : Ki,...,V. : K.} (z : P) e else e

r F- T E K type T is of sort K in r
r F- S E K type schema S is of sort K in r Type inference Pattern variables behave as local
r i- P E K pattern P is of sort K in r type symbols in ML. Typechecking with local type sym-

bols implies an extension ofjudgement contexts in order
to control the scope of type symbols:

r ::- empty context
I r, 7r tuple sort declaration r z ...
I r, F: K symbol declaration I r, z : S variable type assignment

Formation rules ensure that type variables are always The typing judgements are r F•e : T.

bound in the proper context, with a sort consistent with The "instance" rule of ML becomes:
their uses. For instance, we have the rule: e:SEr

r- T: k r : k- K r 1-T : Type T is an instance of S (INST)
r F V(T) : K (SORT-APP) r F e E T

It says that instances have to be well formed in the cur-
In examples only, we help the reader by using different rt context ichsprevents us frm in locas-

letters for variables of different sorts: type variables of bors out of their scope.

tuple sorts are written P and Q and type variables of Sinc we o th wantsto c p n

sort Type are written A, B, etc. We also use F, G, and R require that the types of values to become dynamic be

for pattern variables.reurthttetpsovausobcmedn ice
closed, and then tags can be statically compiled.

Patterns are pairs of a set of pattern variables r F e E S S is closed
IV1,. .. , V,,} and a type T. They are well formed if r F dynamic(e) E Dynamic (DYN-I)

the signature of all Vi's if of the form ir -* K for the
same tuple sort ir. The exact rule for pattern formation This rule -nay destroy the principal typing property of
is: ML. If the principal type of an expression e is S and

r, A0, &,..., A. ý r S is not closed, then typing dynamic(e) requires that

r, r, v :Ar - Ki,...,V. : i - K., free variables of S are instantiated by ground types.
A0 :7r, A, : Type,..., A,, : Type F T E Type However, the set of closed instances of a principal type

17, 7r F- V T : er -- , V,, :r -y Kp F T that is not closed does not have a principal element.

E V(Ao : 7r, A, : Type,..., A,, : Type) T We want to avoid such situations, since the nonex-
istence of a principal type corresponds to an ambiguity

In particular, there is exactly one pattern variable of concerning the tag that a dynamic value should carr).
tuple sort per pattern. Therefore, we say that a program is not well typed if it

Again, we would like to guarantee definiteness of has no principal typing derivation.
patterns, and we impose the sufficient condition that Type inference is realized by the same algorithm as
patterns be ordered. Ordered patterns are those that in ML but delaying tag-closure checking to the end of
satisfy the conditions given in section 3.5, and in addi- typechecking (by gathering free variables of types of
tion all non-pattern free variables of sort Type must ap- dynamic values in a list, for instance). If one of these
pear at least once outside of all pattern variables in the variables is still free at the end of typechecking, then
pattern. In the context of ML, our definiteness require- there exists no principal derivation, and the program is
ment is reminiscent of the type-explication restriction not well typed.

100

The rule for typecase is: 1 is used to represent failure; it is the atomic constraint

with no solution.
r I- d E Dynamic r I- e' E B In general, a unificand U is an atomic constraint,
F, r- {Vi : K 1 ,..., V. : K,,}T E S the conjunction of two unificands U' A U", or the ex-

r, v., V : K 1 , .. , V, : Kn, z: S F- e E B istential unificand 3a.U'. The solution set of U' A U"
r, P: r ý- Ftypecase d of is the intersection of the solution sets of U' and U".

,V,,..., V,}) (z:T) e else e' E B The solution set of the existential unificand 3a.U' is

The other rules of ML are unchanged. the set of solutions of U' restricted to variables distinct
from a. We identify unificands up to: comrnutativity
and associativity of conjunction, renaming of variables

6.3 Evaluation bound by 3's, exchange of consecutive 3's, and removal

Compilation is easily decomposed into two phases. The of vacuous 3's.
first phase translates ML into a variant, called ML-, Two unificands U and V are equivalent if they have
where dynamics are explicitly typed; this translation the same set of solutions. This obviously defines an
requires a bit of inference. ML- differs form ML only equivalence relation on unificands, and in fact a con-
in its dynamic construct: gruence.

We reduce the original matching problem to that of
e = dynamic(e : S) finding the solutions of the unificand 3FV(r).(T - r).

In order to solve this problem, we now give a list of
and its typing rule: equivalences between unificands-the unificand on top

r F a ES S is closed is always equivalent to the one at the bottom. Tag
T - dynamic(a : S) E Dynamic (DYN-I) variables are written a; C and C' are constant sym-bols, and always occur fully applied; and X is either a

The translation of an ML program e into ML- is any universal variable A or a pattern variable V. The set

ML- program M whose principal type derivation is of all variables is V.
also a principal type derivation for e. This defines M 9 Decomposition
uniquely (types being equal up to alpha-conversion).
The type reconstruction algorithm is a trivial adapta- C(Ti) C(ri) C(M) C'(ij)
tion of the usual type inference algorithm. The seman- A(T -) ±. C ' C
tics of an ML program e is the semantics of its transla-

tion into ML-. * Instantiation
The evaluation rules are mostly standard. The only

interesting one is for typecas., as it :-ivolves new meth- C(T,) a
ods for matching and pattern-varia~le instantiation. 3ai. a -_ C(ai) A A(T• i

Matching is not quite as usual, since it allows tag in-
stantiation, and it also has to deal with tuple variables.
Its inputs are a pattern {V1 : K 1 ,...,V. : K.} T and V(Ao;ai,...,a,) r
a tag, that is, a closed type V(a1,... , a,,) r. The pat- V
tern variables are the Vi's, and the universal variables Propagation
are the remaining free variables of T. The set of vari-
ables that occur in the tag (the ai's) can increase during X - r A M
tag instantiation. The algorithm returns a substitution X -- r A [r/XIM
p with domain the pattern variables, such that there
exists a substitution p' with domain the tag variables, a-r
and with p'(r) = p(T). a • FV(r), r 0 V

We describe the algorithm as transformations on Universal-variable restriction
sets of unification constraints called unificands; the

transformations keep unchanged the set of substitutions Ai - a A Ai - a A - r
that satisfy the constraints. The substitutions that we ± 2 t V
consider can instantiate both pattern and tag variables,
but not universal variables. * Existential simplifications

The metavariable T still stands for any type, and r
stands for a type that does not contain pattern vari- U A (3a.U')
ables. The atomic constraints are pairs, T - r or 3a.(U A U') a • FV(U)
r T. The pairs T r and r-_ T are considered
equal. A substitution is a solution of an atomic con- 3a.(a -- r A U)
straint if it unifies both sides. In addition, the constant 3a.Ua FV(r) U FV()

101

* Trivial constraints On the other hand, there does not seem to be a

a._ A U 1 A U translation from our language to theirs. They have no
pattern equivalent to our pattern:

U I

These equivalences can be used as rewriting rules. All {F,G} (v:V(P,A,B)T(A,F(P;A),B,G(P:B)))
rules are oriented from top to bottom; one step of because the quantifiers in the prefix of their patterns
rewriting is the application of exactly one rule; apply-ing he ule inany rde alaystermnats. hen are in linear order, and hence it is not possible to have

ing he ule inany rde alaystermnats. hen the "Parallel" dependencies of F on A and of G on B. We
successful, this process produces canonical unificands the alle" tependenies of thonrA andof theform:can obtain a system intermediate between theirs and

ours by leaving tuple variables implicit, and there we

9a&.(A(A. = cq) AA(v = r)) would rewrite the pattern above:

A unificand that cannot be reduced and that is not yet {FG} Cv:V(AB)T(A.FCA),BGCB)))

in canonical form is either 1. or contains a constraint However, we believe that explicit tuple variables are
V(Ao; T1, ... , T,) - r. The ordered condition on pat- useful, since they allow examples like the applyTwice
terns prevents the latter (as the second instantiation function:
rule would apply to one of the constraints). Hence,
for ordered patterns, rewriting always produces either let applyTuice =
a canonical unificand or I. A(df) A(dxy)

Because of the form of the rules, the matching is typecase df of
unitary, and all solutions are equal up to renanming of {F,F'} (f:F(F)'-+F'(P))
the ac's. The unique tuple variable that appears in typecase dxy of
all the rj can be bound to the tuple (ak), and its size {G,11} (x,y:F(G(Q)) x (F(H(Q))))
bound to the tuple sort. I x, f y

else ...
6.4 Related work else ...

The work on dynamics most closely related to ours' is This cannot be expressed in our intermediate system,
that of Leroy and Mauny [17]. Our system can be seen nor in systems with just type quantifiers, such as Leroy
as an extension of their system with "mixed quantifica- and Mauny's.
tion."

Instead of introducing a typecase statement, Leroy
and Mauny merge dynamic elimination with the usual References
case statement of ML. If we ignore tlhis difference, their
dynamic patterns have the form QA where A is a type [1] Martin Abadi, Luca Cardelli, Benjamin Pierce,
and Q a list of existentially or universally quantified and Gordon Plotkin. Dynamic typing in a
variables, statically-typed language. ACM Transactions on

For instance, Programming Languages and Systems, 13(2):237-
268, April 1991.

VCA)3(F)V(B)3(G) (v:.(A.FBG)) [2] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn

is a pattern of their system. The existentially-quantified Myhrhaug, and Kristen Nygaard. Simula Begin.
variables play the role of our pattern variables. The Studentlitteratur (Lund, Sweden), Bratt Institute
order of quantifiers determines the dependencies among Fuer Neues Lerned (Goch, FRG), Chartwell-Bratt
quantified variables. Thus, the pattern above can be Ltd (Kent, England), 1979.
rephrased: 131 Luca Cardelli. Amber. In Guy Cousineau, Pierre-

3(F)3(G)V(A)V(B) (v:T(A,F(A),B,G(A,B))) Louis Curien, and Bernard Robinet, editors, Corn-
binators and Functional Programming Languages.

Writing quantifiers in our patterns explicitly (for ease Springer-Verlag, 1986. Lecture Notes in Computer
of comparison), the equivalent pattern in our system is: Science No. 242.

{F,G} (v:V(P,AB)T(A.F(P;A),B,G(P;A,B))) [4] Luca Cardelli. Structural subtyping and the no-
tion of power type. In Proceedings of the 15th

With the same approach, in fact, we can translate all ACM Symposium on Principles of Programming
of their patterns into equivalent patterns in our system, Languages, pages 70-79, San Diego, CA, January
preserving the intended semantics. 1988.

102

[5] Luca Cardelli, Simone Martini, John C. Mitchell, [19] John Mitchell and Gordon Plotkin. Abstract types
and Andre Scedrov. An extension of system F with have existential type. ACM Transactions on Pro-
subtyping. In T. Ito and A. R Meyer, editors, gramming Languages and Systems, 10(3), July
Theoretical Aspects of Computer Software, number 1988.
526 in Lecture Notes in Computer Science, pages
750-770. Springer-Verlag, September 1991. [201 Alan Mycroft. Dynamic types in ML. Draft article,1983.

[6] Luca Cardelli and Peter Wegner. On understand-
ing types, data abstraction, and polymorphism. [21] John Reynolds. Towards a theory of type struc-

Computing Surveys, 17(4), December 1985. ture. In Proc. Colloque sur la Programmation,
pages 408-425, New York, 1974. Springer-Verlag

[7] Gilles Dowek. A second order pattern matching Lecture Notes in Computer Science 19.
algorithm in the cube of typed A-calculi. In Pro-
ceedings of Mathematical Foundation of Computer [22] Paul Rovner. On extending Modula-2 to build

Science, volume 520 of Lecture Notes in Computer large, integrated systems. IEEE Software, 3(6):46-

Science, pages 151-160. Springer Verlag, 1991. 57, November 1986.

Also Rapport de Recherche INRIA, 1992. [23] Satish R. Thatte. Quasi-static typing (prelimi-

[8] Gilles Dowek. Third order matching is decidable. nary report). In Proceedings of the Seventeenth
In Proceedings of the Seventh Annual IEEE Sym- ACM Symposium on Principles of Programming
posium on Logic in Computer Science, 1992. To Languages, pages 367-381, 1990.

appear. [24] Pierre Weis, Maria-Virginia Aponte, Alain Laville,

[9] Greg Nelson (ed.). Systems Programming in Michel Mauny, and Ascander Suirez. The CAML
Modula-3. Prentice Hall, 1991. reference manual. Research report 121, INRIA,

Rocquencourt, September 1990.
[101 Giorgio Ghelli. Proof Theoretic Studies about r

Minimal Type System Integrating Inclusion and [25] Niklaus Wirth. From Modula to Oberon and the
Parametric Polymorphism. PhD thesis, Universiti programming language Oberon. Technical Re-
di Pisa, March 1990. Technical report TD-6/90, port 82, Institut fiir Informatik, ETH, Zurich,
Dipartimento di Informatica, Universiti di Pisa. 1987.

[11] Jean-Yves Girard. Interpritation fonctionelle et
ilimination des coupures de l'arithmitique d'ordre
superieur. PhD thesis, Universiti Paris VII, 1972.

[12] Mike Gordon. Adding Eval to ML. Personal com-
munication, circa 1980.

[13] Robert Harper, Robin Milner, and Mads Tofte.
Commentary of Standard ML. The MIT Press,
1991.

[14] Fritz Henglein. Dynamic typing. In ESOP, 1992.

[15] Girard Huet and Bernard Lang. Proving and
applying program transformations expressed with
second-order patterns. Acta Informatica, 11:31-55,
1978.

[16] Butler Lampson. A description of the Cedar lan-
guage. Technical Report CSL-83-15, Xerox Palo
Alto Research Center, 1983.

[17] Xavier Leroy and Michel Mauny. Dynamics in ML.
In Proceedings of the ACM Conference on Func-
tional Programming Languages and Computer Ar-
chitecture, 1991.

[18] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C.
Schaffert, R. Scheifler, and A. Snyder. CL U Ref-
erence Manual. Springer-Verlag, 1981.

103

Extensions to Standard ML to Support Transactions

Jeannette M. Wing, Manuel Faehndrich, J. Gregory Morrisett, and Scott Nettles'
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

A transaction is a control abstraction that lets programmers treat a sequence of operations as an atomic
("all-or-nothing") unit. This paper describes our progress on on-going work to extend SML with trans-
actions. What is novel about our work on transactions is support for multi-threaded concurrent trans-
actions. We use SML's modules facility to reflect explicitly orthogonal concepts heretofore inseparable
in other transaction-based programming languages.

1 Revisiting Transactions

1.1 Separation of concerns

Transactions are a well-known and fundamental control abstraction that arose out of the database
community. They have three properties that distinguish them from normal sequential processes: (1) A
transaction is a sequence of operations that is performed atomically ("all-or-nothing"). If it completes
successfully, it commits; otherwise, it aborts; (2) concurrent transactions are serializable (appear to
occur one-at-a-time), supporting the principle of isolation; and (3) effects of committed transactions
are persistent (survive failures). Systems like Tabs [8] and Camelot [3] demonstrate the viability of
layering a general-purpose transactional facility on top of an operating system. Languages such as
Argus [4] and Avalon/C++ [2] go one step further by providing linguistic support for transactions
in the context of a general-purpose programming language. In principle programmers can now use
transactions as a unit of encapsulation to structure an application program without regard for how
they are implemented at the operating system level.

In practice, however, transactions have yet to be shown useful in general-purpose applications pro-
gramming. One problem is that state-of-the-art transactional facilities are so tightly integrated that
application builders must buy into a facility in toto, even if they need only one of its services. For
example, the Coda file system (7] was originally built on top of Camelot, which supports distributed,

"*This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical Systems
Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order
No. 7597.

104

concurrent, nested transactions. Coda needs transactions for storing "metadata" (e.g., inodes) about
files and directories. Coda is structured such that updates to metadata are guaranteed to occur by
only one thread executing at a single-site within a single top-level transaction. Hence Ccda needs
only single-site, single-threaded, non-nested transactions, but by using Camelot was forced to pay the
performance overhead for Camelot's other features.

The Venari Project at CMU is revisiting support for transactions by adopting a "pick-and-choose"
approach rather than a "kit-and-kaboodle" approach. Ideally, we want to provide separable modules to
support transactional semantics for different settings, e.g., in the absence or presence of concurrency.
Programmers are then free to compose those modules supporting only those features of transactions
they need for their application.

1.2 Non-traditional applications

A second problem with existing transactional facilities is that they have been designed primarily with ap-
plications like electronic banking, airline reservations, and relational databases in mind. Non-traditional
applications such as proof support environments, software development environments, and CAD/CAM
systems want transactional features, most notably data persistence, but have different performance
characteristics. For example, these applications do not manipulate simple database records but rather
complex data structures such as proof trees, abstract syntax trees, symbol tables, car engine designs, or
VLSI designs. Also, users interact with these data during long-lived "sessions" rather than short-lived
transactions; indeed we can view a "session" itself as a sequence of transactions. For example, during a
proof session a user might explore one path in a proof tree transactionally; if the path begins looking like
a dead-end the user may choose to abort, backing all the way up to the first node in the path or perhaps
to some intermediate node along the way. Also, though multiple users may need to share these data,
simultaneous access might be less frequent. For example, proof developers might work on independent
parts of a proof tree, perhaps each proving auxiliary lemmas of the main theorem; software developers
might modify different modules of a large program. Finally, these non-traditional applications typically
support different update patterns. Whereas travel agents make frequent updates to airline reservations
databases, we do not expect to make updates as frequently to proofs of theorems saved in proof libraries.

The Venari Project's application domain is software development environments; one specific problem
we are addressing is searching large libraries, e.g., specification and program libraries, used in the
development of software systems. We imagine the scenario in which a user searches a large library for
"a program module that "satisfies" a particular specification. We might wish to perform each query as
"a transaction, for example, to guarantee isolation from any concurrent update transaction or to abort
the query after the first n modules are returned.

Our effort to support a "pick-and-choose" approach for transactions has the advantage of providing
us with a way to take performance measurements on different combinations of our separable modules.
We have the potential to do different kinds of performance tuning for the non-traditional applications
we hope to support.

1.3 Contributions of this paper

SML's modules system lets us cleanly exemplify our "pick-and-choose" approach. In the case of single-
site, single-threaded, nested transactions, we support separately the persistence and undoability prop-

105

erties of transactions in terms of two different modules; we then compose them to build a module for
transactions (6]. We reported on this work at the Pittsburgh 1991 ML workshop. Also, along with
others at Carnegie Mellon, we have separately designed and built a threads package for SML/NJ [1].
We reported on this work at the Edinburgh 1990 ML workshop. I

This paper reports on our progress for combining our support for threads and that for transactions.
We address concurrency, in two ways: making an individual transaction multi-threaded and allowing
multiple transactions to run concurrently. To the transaction and database community, our work is novel
because it is the first to cast within a programming language a model of computation that supports
multi-threaded transactions. To the programming language community, our work is among the few
to extend the functional programming paradigm to support a traditionally imperative feature. To the
SML community, our application of the modules facility should be of particular interest.

In the rest of this paper, we motivate the desire to keep threads and transactions as separate control
abstractions (Section 2), give a snippet of the SML programmer's interface to multi-threaded concurrent
transactions (Section 3), describe some details of our design (Section 4), discuss what features of SML
helped in our design and implementation effort (Section 5), and close with a list of future work (Section
6).

We emphasize that this paper describes on-going work. We are taking a pragmatic, bottom-up
approach; by prototyping individual features (e.g., persistence, undoability, read/write locking, nesting,
threads, and transactions) incrementally and then combining them in various ways, we can explore a
rich design space. This paper focuses on the hardest combination: threads and transactions. (Examples
of other reasonable combinations are "multi-threaded persistence" and "multi-threaded undoability.")
Thus, for now we are concerned with providing efficient enough run-time mechanism to give systems
builders flexibility in deciding policy. Although the design described in Section 4 does reflect one
particular policy, our runtime mechanism is general enough to support alternate policies. Finally, we
have not thought greatly about the "ideal" programming interface to provide the SML end-user, but
look forward to designing one in the near future.

2 Keeping Threads and Transactions Separate

In languages like Argus and Avalon, a single thread of control is associated with each transaction. But
threads and transactions are orthogonal control abstractions. So, we would like to relax the restriction
of identifying threads and transactions by allowing multiple threads of control to execute within, and
on behalf of, a single transaction.

Figures la and Ib depict the traditional model, where we use a wavy line to denote a thread and a
box to denote a transaction; time moves from left to right. Figure la shows a single thread executing,
first entering a transaction and then leaving successfully (i.e., committing). Figure Ib shows two
single-threaded transactions executing concurrently. Figure ic depicts our new model where multiple
threads execute within a single transaction. And finally, Figure id depicts multi-threaded concurrent
transactions, the "composition" of Figures lb and lc. The goal of Venari's version of SML is to support
Figure ld through module composition.

'For this paper to be somewhat self-contained, we include the cited Pers, Undo, Trans, and Threads signatures in
Appendices A and B.

106

(a) % Single-threaded

transaction

(b) Concurrent
transact ions

WJMulti-threaded
(c) transaction

SMulti-threaded
(d) concurrent

transactions

Figure 1: Threads and transactions are separate control abstractions.

107

2.1 Why have multiple threads within a transaction?

The most compelling argument for supporting multiple threads within a transaction is modularity.
Consider the following kinds of multi-threaded programs: (1) a search procedure that uses multiple
threads to find program modules satisfying a specification, returning when the first one is found; (2) a
procedure with benign side effects, e.g., rebalancing a B-tree or doing garbage collection, that executes
in the background of the main computation; (3) a netnews server that uses multiple threads to minimize
latency.

We would like to able to run such a multi-threaded program from within a transaction without
having to modify the source code. We would like to treat the program as a black box, reuse it in its
entirety, but have its effects done transactionally (i.e., atomic, serializable, and persistent). Without
being able to simply "wrap" a transaction around the program, we are forced to recode each separate
thread as a concurrent subtransaction of a top-level transaction. This violates one aspect of modularity
since the entire program has to be recoded.

2.2 Why have multiple threads at all?

Concurrent transactions have to be serializable. Thus, by definition, we can view transactions as
happening one after another. On the other hand, threads are often used for two-way communication
through shared, mutable resources (e.g., refs). If we identify each thread with a single transaction, then
we can no longer do two-way communication between threads. For instance, assuming we associate
each thread with a transaction, then Figure 2a shows thread/transaction A and thread/transaction B
executing concurrently. Transaction semantics require that the effects of A and B executing concurrently
are the same as that of either A executing first followed by B (Figure 2b), or vice versa. Suppose A
sends a message to B and B wants to acknowledge A; we cannot put A's execution before B (since A
will never get the acknowledgment) nor can we put B before A (since B will never get the message).
Thus if we want to support two-way communication between processes, we need to support multiple
threads independent of transactions.

Another argument for supporting both threads and transactions as orthogonal concepts is perfor-
mance. In existing transactional systems, the runtime cost of creating and managing a transaction
("heavyweight" process) is not the same as that for a thread ("lightweight" process). Transactions
require runtime mechanism to support protocols for locking, logging, committing/aborting, and crash
recovery. There are cases when parallelism is desired without the performance overhead of transactions.
Again, even if we were to recode one of our example multi-threaded programs with transactions, we
probably do not want to incur the cost of making each thread a transaction.

In short, transactions provide features that threads do not: persistence, undoability, isolation of
effects, atomicity of a sequence of operations, and crash recovery. Threads provide functionality, e.g.,
two-way communication, and performance benefits that transactions do not.

108

thread/transaction A

(a)

thread/transaction B

thread/transaction A thread/transaction B

Figure 2: Transactions are serializable.

109

3 Design Overview

As in our design for single-threaded transactions for SML (6], if f is a function applied to some argument
a, then to execute:

f a

in a transaction, we want programmers to be able to write:

(transact f) a

or more probably,

((transact f) a) handle Abort => [some work]

Here f might be multi-threaded. Informally, the meaning of calling f with transact is the same as that
of just calling f with the following additional side effects: If f returns normally, then the transaction
commits, and if it is a top-level transaction, its effects are saved to persistent memory (i.e., written
to disk). If f terminates by raising the exception Abort, then the transaction aborts and all of V's
effects are undone. Through SML's exceptional handling, in the case of an aborted transaction, the
programmer has control of what to do such as clean-up and/or reraising Abort. Note that we support
the usual model for subtransactions: the persistence of a child's effects is relative to the commit of its
parent and aborting a child does not imply the abort of its parent.

We have implemented the interfaces shown in Figure 3. We use standard two-phase read/write
locks to ensure serializability among concurrent transactions. We use Moss's locking rules for nested
concurrent transactions [5].

Two items of note are visible through these interfaces. First, the TRANSACT signature shows the
clear separation between threads (the substructure Thread-System) and transactions (the substructure
Trans). 2 The functor header additionally shows how we have achieved modularization of our support:
concurrency within a transaction is packaged in TRANS-THREAD; concurrency among transactions,
in RW.LOCK; transaction undoability, in UNDO.

Second, we guarantee the principle of isolation for transactions by making use of "safe" refs (91 (and
correspondingly "safe" arrays). In the context of just threads, a normal SML ref is unsafe, while a ref
protected by a mutex is a safe ref. In the context of transactions, a ref protected by only a mutex is an
unsafe ref, while a ref protected by both a mutex and a read/write lock is a safe ref. A read or write of
a safe ref will fail unless the thread (transaction) holds the mutex (read/write lock) of the ref. Thus, it
is impossible to violate the isolation principle if the programmer uses only safe refs.

2 Appendix B shows parts of the THREAD-SYSTEM and other relevant signatures; set (1] for a discussion of threads
in SML.

110

signature TRANSACT =

Sig
structure Trans

Sig
exception Abort
val transact : ('a -> 'b) -> 'a-> lb
val abort-top-level: unit -> 'a
val abort: unit -> 'a

eqtype rwvlock
val rwvlock : unit -> rw-lock
val acquire-read rw-lock -> unit
val acquire-write rw-lock -> unit

end

structure SRef : SREF
structure SArray : SARRAY

structure Thread-System : THREADSYSTEN

sharing type SRef.lock = SArray.lock = Trans.rwvlock
sharing type SRef.uref = ThreadSystem.SRef.sret
sharing type SArray.uarray = ThreadSystem.SArray.sarray

end

functor Transact (structure TT TRANS-THREAD
structure RW RILOCK
structure SRef SREF
structure SArray : SARRAY
structure Undo : UNDO
sharing type SRef.lock = SArray.lock
sharing type SArray.lock = RW.T
sharing type SRef.uref = TT.TS.SRef.sref
sharing type SArray.uarray = TT.TS.SArray.sarray)

TRANSACT = struct ... end

Figure 3: Signature and functor modules for transactions.

111

4 Design Details

4.1 Simplifying assumptions

To simplify our model, and hence our design, we assume that there is exactly one thread that enters a
transaction and exactly one that leaves a transaction. We do not lose any generality since we can always
immediately fork off multiple children upon entry and we can always force all threads to join into one
upon exit. Second, again without loss of generality, we will assume that conceptually the thread exiting
is the same as that entering; we call this the transaction's root thread.' Finally, we assume no mutexes
are held before a transaction begins. We make this assumption so we do not have to reacquire locks
that were held upon entering a transaction in case an abort occurs. Doing so could cause a deadlock:
Suppose the entering thread t holds a lock and then releases it sometime during the transaction. A
thread s outside the scope of the transaction then acquires it. If the transaction now aborts, and we
are to undo all of its effects, including reacquiring the lock, we may deadlock if s is waiting to acquire
some other held lock.

4.2 Per transaction state

Just as there is per thread state [1], we assume there is per transaction state. This state includes four
pieces of separable information:

"* The data objects accessed by the transaction. Since the order of modifications to these data
objects is important with respect to abort, we call this information the (data) undo list.

"* The set of mutex locks held by threads within a transaction. We call this information the mutex
lock set.

"* The set of read and write locks held for the duration of the transaction. We call this information
the read-write lock set.

"* The set of threads running on behalf of the transaction.

The first piece of information (data state) is separable from the other three (synchronization state)
which we need to maintain because of concurrency due to threads.

4.3 Who commits and who aborts?

Our design gives the root thread the privilege of committing the transaction and the resp 'nsibility of
knowing when it is safe to do so. However, for abort, any thread may encounter a state in which the
thread cannot back out of and knowingly wish to cause the abort of the entire transaction; the root
thread need not be the only thread to determine that an abort is necessary. Thus, rather than requiring
such a thread to communicate with the root thread who could then cause the abort, we permit any
thread to cause an abort.

3 We could relax this assumption by letting threads pus a "baton" among each other, where the baton's flow of control
would reflect that of the root thread, but this relaxation is unnecessarily general.

312

4.4 What happens upon commit?

The effect of a commit is to preserve all data state changes made by the committing transaction. Upon
commit, we do the following:

1. Stop all other active threads running on behalf of the transaction so they do not continue to
modify state;

2. If the transaction is top-level, throw away the data undo list since we do not need to save the old
data values; otherwise, anti-inherit the list to its parent.

3. Release all mutex locks held by non-root threads running on behalf of the transaction.

4. Anti-inherit all read/write locks to its parent [5].

5. If the transaction is top-level, save the state of persistent memory.

6. Exit the transaction and continue processing.

4.5 What happens upon abort?

A transaction may voluntarily abort or be involuntarily aborted (e.g., due to a system crash). Following
our semantics for single-threaded transact (6], we mask any exception as an abort. Moreover, we treat
any unhandled exception as an abort. The effect of an abort is to undo all changes to the data state
made by all threads exec,,ting on behalf of the transaction. Upon abort, we do the following:

1. Stop all other active threads running on behalf of the transaction so they do not continue to
modify state;

2. Follow the undo list backwards, rewriting all old data values.

3. Release all mutex locks held by threads running on behalf of the transaction.

4. Release all read/write locks.

It is critical that we first undo the data values, then release mutexes, and then release read/write
locks. Data are protected by mutexes; read/write locks are implemented using them. If we were to
release mutexes before undoing all data values, then a thread may modify a data object after the old
value gets rewritten. In order to release a read/write lock, we need to be able to acquire other mutexes;
if we were not to release mutexes before read/write locks, we could end up in a deadlock situation.

5 Where SML Made a Difference

The SML modules facility is key to our "pick-and-choose" approach. It lets us explicitly reflect the
inherent orthogonality of concepts like persistence, undoability, multi-threading, and transactions by
letting us define separate structures for each and then functors that compose them. The Transact
functor that builds a structure for multi-threaded transactions is one example (Section 3). When we
prototyped our implementation for single-threaded, non-concurrent transactions (Appendix A), we also

113

used a functor parameterized over Pers and Undo structures, which respectively provide persistence
and undoability.

We also parameterized the Thread.System structure itself so that the programmer can pick-and-
choose among separable support for persistence, undoability, and multi-threadirig. The Fox Project at
CMU, for example, needs only multi-threading; it does not have to use a separate threads module, but
rather it just has to apply the Thread.System functor to Undo and Pers structures that are essentially
"no-ops." Moreover, it is to SML's credit that modifying the original Thread-System structure to work
with Undo required only two lines of additional code: to "turn off undo" while doing a thread operation
(e.g., acquiring a mutex) and to "turn it back on" when the operation is completed.

Another way we are able to exploit the modules facility is in code reuse. For example, we use only
one functor to implement both kinds of safe refs, that for just threads and that for transactions (q.v.,
sharing type SRef.u.ref = TT.TS.SREI.sref of Figure 3).

Having first-class functions in SML lets us easily support first-class transactions. This view of trans-
actions is a radical departure from the more traditional view taken by other transaction-based program-
ming languages. Programmers in Camelot, Argus, and Avalon write constructs like begin-transact ion
... end-transaction to bracket transaction boundaries and cannot treat the compound statement
as a value.

We relied on the "mostly functional" nature of SML in our implementation of undoability and
persistence. For example, our implementation for undoability keeps a log of all modifications to the store
and the old values originally assigned to the modified locations. For traditional imperative languages
where modifications to the store would be frequent, maintaining and replaying such logs would be
expensive. Such a log is inexpensive to maintain for SML since we can assume mutations are rare.

Though we greatly benefit from SML's static typing, one place where we need dynamic types is in
our support for persistence. Our interface allows us to add bindings between identifiers and values to a
persistent environment; SML cannot statically determine whether the type of the value returned by a
subsequent retrieve (e.g., upon startup of a new SML session or upon crash recovery) on some identifier
is the same as the type of the value when it was initially bound.

In summary, SML is a nice vehicle with which to express separable concepts. Though SML may not
be the natural language of choice in which to support transactions, it is a natural language of choice for
the non-traditional applications of transactions that we have in mind. Many of CMU's projects that
involve reasoning about programs, Edinburgh's LEGO "proofs-as-programs" system, Cornell's NuPrl
system, and AT&T Bell Labs's proof support environment all use SML as their implementation lan-
guage. These applications need some, if not all, transactional features like data persistence, concurrency
control, checkpointing, backtracking, and crash recovery. We hope to provide these potential users with
a set of SML modules that they can use in a "pick-and-choose" fashion.

6 Status and Future Work

We have a working prototype of all the interfaces given in this paper, but much work remains:

L Language design: As mentioned in the introduction we have yet to do a design of an SML end-
user's interface for multi-threaded concurrent transactions. We are also still exploring different
policies that our mechanisms can support. We may export different end-user interfaces, each
reflecting a different policy.

114

* Semantics: We have been negligent in working out any formal semantics for our extensions to SML.
Some of the challenges specific to SML include a semantics for undoability and a semantics for
the interactions between callcc and transact; specific to transactions, a model of computation
and meaning of correctness for multi-threaded concurrent transactions.

9 Implementation: After our prototype becomes stabler, we intend to build sample applications and
perform experiments to measure the costs of our extensions.

Acknowledgments

We thank the rest of the Venari Group for their discussions: Gene Rollins, Amy Moormann Zaremski,
Nick Haines, Darrell Kindred, and Drew Dean. Nick and Darrell, in consultation with Scott Nettle; -nd
Greg Morrisett, are now rebuilding the prozotype implementation originally built by Greg and Manuel
Faehndrich. Drew, who is building a file system in SML, may very well be Venari's first real client.

References

[1] E.C. Cooper and J. Gregory Morrisett. Adding threads to Standard ML. Technical Report CMU-
CS-90-186, CMU, December 1990.

[2] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery properties
in Avalon/C++. IEEE Computer, pages 57-69, December 1988.

[3] J. Eppinger, L. Mummert, and A. Spector. Camelot and Avalon: A Distributed Transaction Facility.
Morgan Kaufmann, 1991.

[4] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust, distributed
programs. ACM TOPLAS, 5(3):382-404, July 1983.

[5] J.E.B. Moss. Nested transactions: An approach to reliable distributed computing. Technical Report
MIT/LCS/TR-260, MIT, April 1981.

[6] Scott M. Nettles and J.M. Wing. Persistence + Undoability = Transactions. In Proc. of HICSS-25,
January 1992.

[7] M. Satyanarayanan et al. Coda: A highly available file system for a distributed workstation envi-
ronment. IEEE Trans. Comp., 39(4):447-459, April 1990.

[8] A.Z. Spector et al. Support for distributed transactions in the TABS prototype. IEEE TSE,
11(6):520-530, June 1985.

[9] A.P. Tolmach and A.W. Appel. Debugging Standard ML without reverse engineering. In Proceedings
of the ACM Lisp and Functional Programming Conference, pages 1-12, 1990.

115

Appendix A: Persistence and Undoability

Figure 4 illustrates persistence and undoability as orthogonal concepts; we compose them to form single-
threaded, non-concurrent, nested transactions. In Figure 4a, as a thread executes, a call to persist
has the effect of saving all values reachable from a persistent handle to disk. In Figure 4b, a call to
checkpoint has the effect of "remembering" the store at the point of call; a call t -restore has the effect
of undoing the effects on the store, reverting back to that at the (dynamically) last call to checkpoint.
Finally, Figure 4c shows how we compose checkpoint with persist to give us transaction commit;
checkpoint with restore to give us transaction abort. The signatures for persistence, undoability, and
transactions that follow are unfortunately slightly different from that described in [6], but do reflect
the current working version of our implementation. The primary difference between the TRANSACT
signature here and its analogue in Figure 3 is the absence of an interface for read/write locks, which is
not needed in the absence of concurrency.

signature PERS = sig
exception INITFAILED
exception PERSIST-FAILED
val init: string * string * bool -> unit
val persist: ('a-> 'b) -> 'a -> 'b

type identifier
exception UnboundId
val bind: identifier * 'a -> unit
val unbind: identifier -> unit
val retrieve: identifier-> 'a

end

signature UNDO = sig
exception Restore of exn
val checkpoint: ('a -> 'b) -> 'a-> 'b
val restore: exn -> 'a

val exn2restore: ('a-> 'b))> 'a-> 'b
val restore2exn: ('a-> 'b)-> 'a-> 'b
val restore-on-exn: ('a-> 'b) -> 'a -> 'b

end

signature TRAISACT = sig
val transact: ('a -> 'b) -> 'a-> 'b

exception Abort
val abort-top-level: unit -> 'a
val abort: unit -> 'a

end

116

p (a) Persistence only

_ persist

Oops!

I...................... restore (b) Undoability only

checkpoint

ICommit

checkpoint persist (c) Transactions
(single-threaded)

I --!

checkpoint restore

Figure 4: Persistence + Undoability = Transactions

117

Appendix B: Threads

Our Threads interface and parts of the TRANS-THREAD and THREAD.SYSTEM signatures:

signature THREAD = sig
val fork : (unit -> unit) -> unit
val exit : unit -> unit

type mntex
val mutex : unit -> mutex
val withmutex : mutex -> (unit -> 'a) -> 'a

type condition
val condition : mutex -> condition
val with-condition : condition -> (unit -> 'a) -> 'a
val signal : condition -> unit
val broadcast : condition -> unit
val await : condition-> (unit -> bool) -> unit
val vTait : condition-> (unit-> 'a option) -> 'a

exception Undefined
type 'a var
val var : unit -> 'Ila var
val get : 'a var -> 'a
val set : 'a var -> 'a -> unit

end

signature TRANS-THREAD = sig
structure TS : THREADSYSTEM
structure TransID : sig ... end

end

signature THREAD-SYSTEM = sig
structure Thread : THREAD

structure SRef : sig ... end
structure SArray : sig ... end

end

118

Programming Images in ML

Emmanuel Chailloux Guy Cousineau
LIENS-- LITPt LIENS'

Introduction

In this paper, we describe a library that provides basic types and functions to produce
graphical documents in ML. This library is implemented on top of CAML [9] and
CAML Light [8] in a functional style [7].

The graphical model is basically that of PostScript [1]. Various objects can be
defined on the infinite cartesian plane and arbitrarily scaled, translated and rotated by
application of linear transformations. Moreover, high level primitives allow for various
combinations of objects.

The main difference with PostScript is that graphic objects are represented by a
data structure and has a ML type. A type "picture" is used to represent all printable
objects. Pictures have a "frame" and possibly a set of named "handles" that are
used for combination operations. Pictures are defined from more basic objects such as
geometric elements (polygonal lines, circle arcs and Beziers curves), texts and bitmaps.
All operations defined on these types are purely functional except for pixel editing in
bitmaps.

Printing is obtained via a translation to PostScript. The philosophy of this trans-
lation has been to delegate as much work as possible to PostScript. In particular, the
application of linear transformations to pictures is delegated to the PostScript inter-
pretor. This has two advantages: the efficiency of PostScript interpretors is fully used
and the sharing involved in the ML representation of pictures is preserved as much as
possible.

* URA 1327 - Laboratoire d'Informatique de F' Ecole Normale Supirieure - 45 rue d'Ulm, 75230 Paris
Cedex 05, France. Electronic mail: Emmanuel.Chailloux@ens.fr, Guy.Cousineau§ens.fr

tU RA 248 - Laboratoire d'Informatique Th~orique et Programmation - Institut Blaise Pascal - 4,

place Jussieu - UPMC - 75252 Paris Cedex 05, France. Electronic mail : ec©litp.ibp.fr

119

The main application we foresee for this library is the production of documents
involving integrated use of ML and PostScript or ML, IITEX and PostScript as in the
text you are presently reading. In particular, technical texts describing applications
written in ML (e.g, proof systems or abstract machines) can be easily decorated with
visual representations of ML objects involved in computations (cf. figure 12 showing
pictures from Y. Lafont [6] and P. Crdgut [4]). Visualization of ML objects can also be
used interactively by running an ML window and a PostScript window concurrently.
Adding graphical attributes to ML types could lead to interresting debugging tools.

As we all know, functional languages have an expressive power which facilitates the
programming activity. It is therefore not surprising that our library provides a way
of producing images which is much more pleasant than using the PostScript language
itself.

The system we have obtained so far is only a basic layer for producing images in
ML. We think it is a good basis for writing technical pictures, described by programs
as some of our examples show. We plan to develop further layers to do so.

The paper gives an overview of the system, followed by application examples which
reflect some of its possibilities. The last section describes some possible further devel-
opments.

1 Overview of the system

1.1 Basic concepts

Each graphic notion has a corresponding ML type. Objects that can be made visible
on a graphic device are of type picture. A picture always has an absolute position on
the infinite cartesian plane. The user can use this fact if it is convenient for her/him
or completely forget about it by using more abstract constructions. Pictures can be
arbitrarily translated. rotated and scaled. Some pictures can also be created using
non-linear transformations (cf. figure 11).

Pictures are produced by grouping more elementary pictures in various ways. Basic
constituents of pictures are sketches, texts and bitmaps. A sketch is a sequence of
geometric elements such as be lines, arcs and curves. A sketch can be transformed into
"a picture by choosing a linestyle and a color to draw its constituents or a fillstyle and
"a color to draw its interior. It can also be used to clip part of a picture. Before being
used to produce pictures. sketches can also be arbitrarily grouped and transformed.

1.2 Sketches

A sketch is basically a sequence of geometric elements. It corresponds to what is called
a "path" in the PostScript terminology.

The basic constituents of sketches are geometric elements. A geometric element is
either a polygonal line represented by a sequence of points or a circle arc represented
by a center, a radius and two angles or a Beziers curve represented by a start point, two
control points, and an end point. The corresponding CAML types are the following:

type point = {xc:float;yc:f1oat};;
type geom-element =

120

Seg of point list
I Arc of point * float * float * float
I Curve of point * point * point * point;;

Given the points A=(1.U), B=(1,3), C=(3,3), D=(3,1), E=(1,8), F=(2,4), G=(4,9),
H=(5,8) and I=(7,4), the expressions Seg [A;B;C;D;A], Curve(E.F,G,H) and Arc(I,2,30,290)
correspond to the the three elements that are drawn with thick lines in figure 1.

E hi

..

Si .. -........

B C.. .D

Figure 1: Geometric elements

Sketches are represented by a CAML type sketch which is used as an abstract
type. The representation of type sketch involves lists of geometric elements together
with additional information such as frame and interface information. The basic building

function for sketches is:

make-sketch : geom.element list -> sketch

1.3 Painting Information

Sketches are made of pure lines. To be visualized as images, they require painting
information which are represented by the types linestyle, fillstyle and color.

type linecap Buttcap I Squarecap I Roundcap;;
type linejoin = Beveljoin I Roundjoin I Miterjoin;;
type linestyle = {linewidthLS:float; linecapLS:linecap;

linejoinLS:linejoin; dashpatternLS:float list};;

type fillstyle = Nzfill I Eofill;;
type color = Rgb of float * float * float

I Hsb of float * float * float
I Gra of float;;

We do not detail here the meaning of these types which refer exactly to PostScript
notions.

121

1.4 Pictures

The type picture is used for all visual objects in the system. Pictures can be built
from sketches using painting information. As shown later, they can also be built from
bitmaps and texts.

Here are the two functions that make pictures from sketches:

make.draw-picture linestyle * color -> sketch -> picture
make-fill-picture fillstyle * color -> sketch -> picture

Pictures can be "put together" using functions:

join-pictures : picture -> picture -> picture
join-picture-list : picture list -> picture

The arguments of these functions are taken from left to right Each new picture can
cover previous ones partially or totally. Figure 2 shows examples of what can be done
using a sketch representing letter P. The left image is a draw picture , the middle one
is a fill picture and the right one is a superposition of the two.

S I I ' : :

Figure 2: Three pictures obtained from the same sketch

1.5 Picture transformations

Transformations are normally functions of type point -> point. However, most useful
transformations are linear transformations represented by 3 x 3 matrix which have
shape: (l Mn 1 n 2 M1 3 r e r s n i g p o n x)

Mn21 M 2 2 M 2 3 operates on vector y representing point (x,y).
0 0 1 !

Users normally build linear transformations using library functions such as:

translation : float * float -> transformation
rotation : point -> float -> transformation
scaling float * float -> transformation
compose-transformation : transformation-> transformation -> transformation
inverse-transformation : transformation-> transformation

122

Transformations are applied to pictures using function

transform-picture : transformation -> picture -> picture

Figure 3 describes the effect of applying transformations T1= translation (2,-9)
T2= scaling (0.5,0.5) and T3= rotation xc=-2;yc=-2 60 to a basic picture.

...

...

.............

..iii !! i

Figure 3: Transformations Tl,T2 and T3

1.6 Frames

The CAML graphic system maintains a frame information for pictures. A frame is a
rectangle with sides parallel to the axes which contains the picture. It can be made to be
the smallest rectangle containing the object but the user can also choose to determine
the frame of an object by himself and under his own responsibility for instance to add
blank space around an object. Frames provide the basis to define various operations
such as rotation of an object around its center (defined as its frame center), horizontal
and vertical flip operations, changing the size of an object to fit it in a different frame
or putting an object besides or over another object adjusting their frame width and
frame height.

Typical functions using frames explicitly are:

frame-center : frame -> point
frame-to-frame-transform frame -> frame -> transformation
picture-frame : picture-> frame
extend-picture-frame : extension -> float -> picture -> picture

123

fit.picturein-frame : picture -> frame -> picture
force-picture-in-frame : frame -> picture -> picture

The functions extend-picture.frame and force.picture.in-frame are used un-
der user's responsibility to give arbitrary frame to object.
The -function f it-picture-in-frame involves scaling and translating a picture to make
it fit exactly in a given frame. The transformation that is used to do so is accessible
to the user via function frame-to-frame-transform.

The figure 4 shows the result of fitting a given picture in a given frame.

A...' _ _

Our Example A frame Example fit into frame

Figure 4: Fitting a picture into a given frame

Some local picture transformations are computed using the frame such as the fol-
lowing ones:

rotate-picture : float -> picture -> picture
vflip-picture picture-> picture
hflip.picture picture-> picture

Figure 5 shows the effect of these functions on our favorite example:

rotation by 45 vertical flip horizontal flip

Figure 5: Transformations using frames

1.7 Texts

Text pictures are strings of characters that will be displayed in a given font style and a
given size. They are built with their bottom left corner at the origin of the coordinate
system but then they can of course be moved to any position.

124

The basic functions for producing text pictures are:

make-font : font-style -> float -> font
make-text.picture : string -> font -> color -> picture

An extensive list of font styles exists and the user can have access to the width of
any string in any font. Using this information, one can for instance write text on a
circle in the following way:

#let Pi = acos (-1.0);;
Pi float
Pi = 3.14159265358979
#let circletext fnt str center radius =

* let 1= text-width fnt str in
if 1 >= 2.0*Pi*radius
then failwith "text is longer chan circumference"
else let start-angle = (Pi/2.0) + i/(2.0*radius)
and char-list = explode str in
let angle-list = start.angle:: (rev (ti (snd
* (it-list (fun (a,l) w -> let aa = a-w/radius
in (aa, aa::l))
(start.angle, 0)
(map (textwvidth fnt) char.list)))))
and place-char (s,a) =
let Ti = rotation center ((a-Pi/2.0)*180.0/Pi)
and T2 = translation (center.xccenter.yc+radius)
in transform-picture (Ti CT T2)
(make.text.picture s fut (Gra 0.0))
in joinupicture.list
(map place-char (combine (char-list,angle-list)));;
circletext font -> string -> point -> float -> picture
circletext = <fun>

The result of applying circletext with center (5,5) and radius 3 is shown in figure 6.

.4..

Figure 6: A circular text

125

1.8 Bitmaps

A bitmap is basically a two dimensional array of pixels. It has a height, a width and a
depth. The depth is the number of bits used for each pixel. Possible values are 1,2,4
or 8.

Bitmaps can be created from scratch using functions

create.bitmap : int -> int -> int -> bitmap
set-pixel : bitmap-> int -> int -> int -> char

However, they are usually read from a string representation obtained through a
digitalizer by function:

read.bitmap : int -> string -> bitmap

whose first argument is the depth.
Functions are provided to uniformly modify a bitmap or extract a sub.bitmap such

as

map.bitmap : (int -> int) -> bitmap -> bitmap
sub-bitmap : bitmap -> int * int -> int * int -> bitmap

Figure 7 shows an example of a bitmap of depth 1 and its inverted image.

A

Figure 7: A bitmap transformation

1.9 Picture Composition using frames

Frames can be used to adjust pictures such that their frames fit nicely together either
side by side or one on top of the other. Functions BPICT and OPICT make a new
pictures by putting two pictures side by side or one on top of the other. If necessary,
the second argument is scaled so that its frame gets same height or width as that of
the first argument. Other functions perform similar actions but do not scale the second
argument. The two arguments are then aligned in specified ways.

Using these composition functions, the users can forget completely about the carte-
sian plane in which pictures are built. Only the relative sizes of pictures are relevant.

This technique of picture composition is nicely exemplified by the construction of
an Escher picture called "Square limit". A programmed version of this picture has

126

been given by Henderson in [5]. A detailed account of Henderson's approach is also
given in Course Notes by Cousot [3]. The version presented here uses the same basic
pictures but builds the final picture in a different way.

The building blocks of the final picture are four basic pictures A , C,D and three
functions named trio, quartet and cycle.

Here are the four basic pictures:

•A • A

Pm,, A Pa

The three basic functions are defined in the following way:

#let rot = rotate-picture 90.0;;
rot : picture -> picture
#let trio(plp2,p3) = (pi BPICT p2) OPICT p3;;
trio : picture * picture * picture -> picture
#let quartet (pl,p2,p3,p4)= (p1 BPICT p2) OPICT (p3 BPICT p4);;
quartet : picture * picture * picture * picture -> picture
#let cycle p = (p BPICT (rot (rot (rot p))))
* OPICT ((rot p) BPICT (rot(rot p)));;
cycle : picture -> picture

Here is a description of what these functions do:

AB A B A >
C C D V -

ftio(A.BC) qua&l(A.6,C,D) CyS(A)

The CAML definition of the picture construction is:

let small = scale-picture (0.5,0.5);;
let square-limit n (P,Q,R,S) =

let TT=quartet(P,Q,R,S)
and C UMcycle (rot Q)

127

in

let step(C,L,T) =

(quartet(small C
,small(L BPICT T)
,small((rot T)OPICT(rot L))
,UU)

,trio(small L,small T,rot TT)
,trio(small L,small T, TT))

and final-step(C,L,T) =

quartet(small C,small L, small(rot T),rot Q)
in

cycle(final-step(iterate step n (TT,rot TT,UU)));;

Here are TT and UU for basic picture A,B,C,D:

qsgd(A..C.O) ,b 1

The picture corresponding to the original Escher etching is
square-limit 2 (A,B,C,D). It is shown together with its structural description in
figure 1.9.

........ W *ABUCA8.OABSS::"

U: 8 C 0 < 0 C D - C 00 C D < W,8.

**-B co 0; A B co B A I:

c o:
00 t::ev A0 0,:

*:a oAS .;

S<B C D av-

7 0 A 13 :
::L a o 0 > D:

Se V a)

*.,o A ;-., COB a 0> caBA
U C 0C

a o

13.mB 0 o 0) 3. C 0 0 3o a 0 0 3> 0 a;

::*•8 a C a g V 0n9 V 0U g V 0U S 0W.-

Sq~w ~m6 Sqmw L" swucim

1.10 Another form of picture composition

Pictures can be given handles in order to combine them in specific ways to obtain new
pictures. A handle is an oriented segment defined by two points. The simplest case is

128

when pictures have one input handle and one output handle. Pictures ca" also have
sets of named handles in input and output.

The function APICT combines two pictures by transforming the second in such a way
that the output handle of the first one coincides with the input handle of the second
one. The input and output handles of the result are the input handle of the first one
and the output handle of the second one.

Figure 8 demonstrates the use of handles. We start with a square bitmap with side
-:qual to one. It has two handles. The input handle is the segment ((0,0),(1,0)) at the
bottom of the picture. The output handle is the segment ((1,1),(1,:-€)) where 0 is
the golden number :(1 + V/)1/2. The result is obtained by applying to it the function
gold-spiral defined by:

let rec gold-spiral P = function 0 -> P
I n-> (gold-spiral(n-1)) APICT P;;

Figure 8: Golden Camels

1.11 Displaying pictures

The display functions produce a PostScript translation for a picture which can be
directed to a file. These functions can perform a translation and a uniform scaling
of the picture in order to make it centered on the page with reasonable size. So the
user does not have to worry about the actual position and size of its image in order to
visualize it.

2 Application examples

2.1 Drawing binary trees

Drawing pictures of binary trees that are pleasant to look at requires some computa-
tion. The main constraint to satisfy is that subtrees should be not overlap. Another
constraint, almost equally important, is that space should be rather uniformly occupied
i.e. given two subtrees with the same father, the respective space to allocate to each
of them depends on their size and shape. Figure 9 shows two rather different kinds of
binary trees.

The design principles we have adopted for drawing binary trees are the followings:

129

Figure 9: Two excamples of binary trees

* At each level of a binary tree, the distance between brother nodes should be

constant.

* The distance between brother nodes at level (n+l) should at mast equal tr• the
distance at level n.

*Two brother subtrees should be drawn is such a way that at each level, the
distance between the rightmost node of the left subtree and the leftmost node of
the right subtree should be at least equal to the standard distance between two
brother nodes at that level.

These constraints are ta~ken into account by a function compute..coef..list which
computes for each binary tree a list of coefficients which indicate the r.tio that should
"be adopted between the distance between two brother nodes at level (n+l) and the
"distance between two brother nodes at level n. Given this list of coefficients, the drawing

of a binary tree becomes straightforward. The drawing function is a standard recursive
function on binary tree which has as a parameter a function to draw nodes. Different
"functions can therefore be used to draw nodes. For instance, if trees are AVL trees, it
is possible to indicate in each node whether the subtree corresponding to each node is
balanced, or heavier on the left or heavier on the right as shown in figure 10.

Figure 10: An AVL tree

130

2.2 Escher's Circle Limit III picture

The picture shown in figure 11 was programmed by students at Ecole Normale Sup~rieure
[2]. It uses knowledge from hyperbolic geometry and group theory.

The circle that contains the picture is the Poincar6 representation of the hyperbolic
plane. The Escher design is based on a paving of the hyperbolic planes using an isometry
group applied to a unique basic picture which is a fish. This group has three generators.
By adding explicitly their inverses, it is possible to obtain a canonical rewriting system
for checking equality of its elements. It is therefore possible to generate non redundant
sets of elements of the group. The picture is obtained using a finite non redundant
subset.

The isometries involved correspond in the Poincari model to homographies of the
form:

z+a

1 + az
where a and A are complex numbers verifying I a j< 1 and I A 1= 1.

These non linear transformations have to be computed by ML since PostScript
doe, not know how to handle them. The finite set of fishes that is retained for the final
picture are those whose size is greater than a given bound.

The key function is extremely simple. It takes as arguments a minimal bound d for
the size and a list of transformations:

let rec escher d=
let ok x --module (app (calc x) q1) < d in
fun 0 -> black-circle
I (x::l) -> if ok x then (escher d 1) JPICT (poisson x)

else (escher d 1);;

Figure 11: Circle Limit III

131

2.3 Others contributions

We show two works realized at LIENS by P. Crdgut and Y. Lafont (cf. figure 12).

P. Crdgut gave a trace in his paper [4], for his abstract machine, to reduce A-terms.
The figure 12 shows the reduction from At.(Au.u(Av.u))(Ax.x)t) to At.t(Av.t). The
conventions used in the drawing are :

"* applications are represented by a white circle,

"* bound variables by a black circle with the De Bruijn's index,

"* free variables by a white circle with the nesting level,

"* closures by a white box with the term, its environment, the nesting level and the
nesting level of the closure,

"* the current state by a black box like a closure with a stack as third term.

12U1 _6

12 5 1

ý77Hýh
12 1 1

Figure 12: Trace execution P-d Rewriting rules

For some experiments in 2-dimensional symbolic computation, Y. Lafont is devel-
oping a software in the functional programming language CAML using this graphic
library. It was used to checl the confluence of his twelve rules (only few seconds for
checking, a bit more for - ;r ' :). The fifty-six critical pairs are shown in his paper
annex [6] under graphical for-.,.

132

3 Possible Developments

The library presented here offers the possibility of representing complex images as
ML values of type picture and gives functions to operate on this type. Basically, it
incorporates in ML the possibilities of PostScript with an added value offered by the
functional style.

Typical applications are functions of type user-type -> picture which give a
visual representation for conceptual objects such as for instance binary trees. It is clear
that many objects defined by ML users have a visual counterpart that is much more
readable and informative than what the standard value printer produces. Associating
visualization functions to ML types could be an important debugging aid. It could also
greatly facilitate the production of research papers describing systems implemented
in ML. The present system is too raw and requires too much effort from the user to
produce easily images from ML types. We shall therefore investigate the possibility of
building appropriate tools to help him/her in this task. We shall also investigate the
possibility of producing informations about the ML system in a graphic way.

Another possibility of application is the production of complex technical pictures.
The present situation in this domain is rather frustrating. The production of technical
texts has been greatly facilitated by the existence of TEX but no similar facility exists
for pictures. We think that a functional description of pictures is a good basis for
improving this situation.

References

[1] ADOBE. PostScript Reference Manual Addison-Wesley, 1985.

[2] CHAMBERT-LOIR, A., GRANBOULAN, L., AND LEMAIRE, C. Une oeuvre d'Escher
en CAML. Tech. rep., "Ecole normale supdrieure", 1991. Rapport de projet de
Magist~re.

[3] COUSOT, P. Cours d'Informatique de l']cole Polytechnique. Paris, 1988.

[4] CR9GUT, P. An Abstract Machine for the Normalization of A-terms. In Lisp and
Functional Programming (1990), ACM.

[51 HENDERSON, P. Functional Geometry. In Symposium on Lisp and Functional
Programming (1982), ACM.

[6] LAFONT, Y. Penrose diagrams and 2-dimensional rewriting. In Symposium on
Applications of categories in Computer Science (1992), Cambridge University Press,
LMS Lecture Notes Series.

[7] LUCAS, P., AND ZILLES, S. Graphics in an Applicative Context. Tech. rep., IBM,
Feb. 1987.

[8] MAUNY, M. Functional Programming using CAML Light. Tech. rep., INRIA,
Sept. 1991.

[9] WEIS, P., APONTE, M. V., LAVILLE, A., MAUNY, M., AND SUAREZ, A. The
CAML reference manual. Tech. Rep. 121, INRIA. Sept. 1990.

133

Distributed Programming with
Asynchonous Ordered Channels in Distributed ML

t
Robert Cooper :

Clifford Krumvieda
{rcbc, cliff}@cs cornell.edu

Computer Science Department, Cornell University, Ithaca NY 14853

ABSTRACT

Distributed ML (DML) is an extension of Standard ML for reliable distributed program-
ming. This paper motivates the choice of port groups and asynchronous multicast as DML's
distributed communication primitives (Krumvieda 1991).

Multicast is an important tool for parallelism and fault tolerance in distributed program-
ming. It is useful whenever groups of processes must cooperate on some task, or receive
the same piece of information. Writing distributed programs comprising many processes
is made difficult by the abundance of possible event interleavings caused by concurrency
and failures. Using a multicast primitive that provides ordering and reliability guarantees,
reduces the possible event histories, making correctness arguments simpler.

Synchronous primitives, such as synchronous send and remote rendezvous, have been
popular in the functional language community, because of their simple ordering semantics.
But with synchronous communication it is difficult to exploit the full bandwidth of fast com-
puter networks [Birman and van Renesse 1992, Knabe 19911 because each communication
necessarily involves one or more round-trip packet exchanges over the network. When
multicast is considered, these costs become intolerable. Asynchronous communication
permits pipelining for good performance, and uses new ordering properties to substitute for
those provided by synchronous primitives.

Distributed ML (Krumvieda 19911 presents flexible, asynchronous group commu-
nication facilities using tile higher-order concurrency primitives of Concurrent ML
[Reppy 19911.

I. INTRODUCTION

Standard ML (SML) [Milner et al. 1989] is a modern language that supports the construction of

correct programs. For instance, SML provides first-class functions, strong static typing, polymor-

phism, and exception handling. Several features of the language make it especially appealing to

the distributed programmer:

9 Most objects in SML are immutable values; unlike C functions, SML applications cannot

directly modify complex structures by assigning to their internal fields. Because an immutable

tSupported under DARPA/NASA grant NAG-2-593, and by IBM, GTE and Siemens.

Supported by a National Defense Science and Engineering Graduate Fellowship sponsored by the Air Force Office
of Scientific Research/AFSC, United States Air Force, under Contract F49620-86-C-0127.

134

function parameter can be passed either by value or by reference (both methods produce the

same results), a distributed programmer need not worry about semantic differences between

local and remote evaluation.

e Many distributed applications evolve from separately running programs that use the network

to share common data. These so-called multi-applications [Auerbach et al. 1991] and their

interfaces must be designed well if they are to be combined effectively. SML's module

system-which allows module interfaces to be type-checked and parameterized in terms of

each other-provides a good framework for designing multi-applications.

e Standard ML has a particularly efficient implementation, Standard ML of New Jersey

[Appel and MacQueen 1991], whose code seems to run within a factor of two of optimized

C code. Since software costs constitute a significant fraction of the total costs of distributed

communication, the low-level support system of a distributed language must be efficient.

9 Any general purpose distributed programming system must provide support for node-level

(lightweight) concurrency. Concurrent ML (CML) [Reppy 1991], an extension of SML,

adds high-level support for single-environment concurrent programming. CML is especially

appealing because it provides excellent performance.

At least two research groups have implemented distributed computing extensions to SML

[Knabe 1991, Matthews 1991]. Both groups have chosen to implement synchronous commu-

nication, where data sources (senders) rendezvous with data sinks (receivers) to transfer data.

Synchronization between senders and receivers ensures the stability and ordering of message de-

livery, thereby aiding program correctness. Unfortunately, synchronous communication makes it

difficult to exploit the full bandwidth of fast computer networks [Birman and van Renesse 19921.
In Distributed ML (DML) [Krumvieda 1991], senders do not wait for receivers to rendezvous

with them, but instead use asynchronous communication. We will argue that asynchronous com-

munication primitives are better than their synchronous counterparts for distributed programming

languages and explain how the stability and ordering problems are addressed.

Although point-to-point (single sender, single reciever) communication in a distributed system

is important, distributed applications frequently employ one-to-many (multicast) communication,

e.g., to efficiently disperse data and maintain replicated data sets. Multicast can be more difficult to

use than point-to-point communication because of the larger number of possible event orderings.

But by adding some reliability and ordering properties [Birman et al. 1991b], the possible orderings

can be substantially reduced and correctness arguments simplified. We will argue for reliable,

ordered multicast as a primitive in a distributed programming language.

135

II. DISTRIBUTED ML

A DML program comprises a set of nodes which contain multiple pre-emptive threads sharing

access to a heap. Nodes may fail by crashing.

Nodes communicate with each other via port groups, collections of src-ports (source ports)

and dest-ports (destination ports) used to multicast data (see Figure 1). A port group serves

the same purpose in DML that a channel does in CML: it transmits typed data between threads.

Conceptually, data which are placed on a group's src-port are transported to each of the group's

dest-ports.

src..pons

~ dest-ports

PORT

GROUP

(~>Z~ meta
destpons

meta
src.porxs

Fig. 1. Conceptual view of a port group

Groups have meta- src-ports and metadest-ports which convey information about port

group membership. For instance, the information that a certain src-port has failed appears

on the group's meta.dest.port. Meta ports are examined in detail in a companion paper

[Krumvieda 1992].

An abbreviated signature for ports and port groups appears in Figure 2. The portTransmit

function is used to asynchronously transmit a datum through a src-port. It returns a CML. event

value, which can be used to obtain a message delivery guarantee (see Section V). Data sent through

port groups are sent asynchronously, and destination ports act as data buffers.

Port groups with more than one src-port must interleave data that are multicast to their

dest-portS. The programmer specifies one of the orderings defined in the ORDERINGS signature

to mkGrp (discussed in Section IV) when creating the group.

The portReceive function is used to receive a value from a destination port. It returns an

OrdEvt. ord-event value that encodes multicast ordering information. How ordered events

differ from CML events is discussed in Section VI.

136

signature PORTS
sig

structure CML: CONCUR ML
structure OrdEvt: ORD-EVENT

type ('a, 'b) srcport
type 'a dest port
type port-id

val portTransmit: ('a, 'b) src port * 'a -> 'b CML.event
val portReceive: 'a destport -> 'a OrdEvt.ord event

val srcID: ('a, 'b) srcport -> portid
val destID: ('a, 'b) destport -> portid

end

signature PORTGROUP =

sig
structure Ports: PORTS
structure Ord: ORDERINGS

type ('a, 'b) port-group (* type 'a data and type 'b meta-data *)

type 'a gview

val mkGrp: Ord.ordering -> 'la port group
val mkSrc: ('a, 'b) portgroup * 'b ->

('a, 'b gview) Ports.srcJport * 'b gview
val mkDest: ('a, 'b) port_group * 'b -> 'a Ports.dest port * 'b gview

end

Fig. 2. Port and port group signatures

III. MULTICASTS

Just as point-to-point message primitives benefit from properties such as reliability (e.g., retrans-
mitting messages lost by the network) and FIFO ordering, multicast communication is easier to
use and reason about if it possesses failure and ordering properties [Birman et al. 199 1al. Two of
these properties are listed below.

* Multicast atomicity: a multicast should be delivered to either all or none of its destinations.
A multicast might not be delivered if its sender crashes part way through its transmission.

* Multicast ordering: a multicast may be ordered relative to other multicasts in the system.
The three properties below generalize the FIFO property common in point-to-point commu-

137

nication.

- FIFO ordering requires multicasts to be ordered pair-wise between the sender and each

receiver.

- causal ordering preserves potential causality between sends and receives, and is dis-

cussed in detail in Section IV.

- total ordering ensures that all multicasts are delivered in the same order at all destina-

tions. It enforces an ordering on concurrent multicasts initiated by different senders,

and also observes the causal ordering property.

Correctly implementing ordered, reliable multicast out of simple point-to-point primitives

is non-trivial (whether based on synchronous or asynchronous point-to-point primitives), and

deriving such protocols has been an active research topic for the last decade. Moreover, many

networks, including Ethernet, support hardware multicast which transmits a multicast as quickly

as a single point-to-point message. Once a multicast has been translated into numerous point-to-

point messages, it is extremely difficult--or at least very expensive-to reconstitute the multicast

destination sets. Therefore, distributed languages that wish to support multicast applications should

provide a multicast primitive. Although one could imagine a system that provided a synchronous

multicast--one in which a sender synchronized with all receivers-such a primitive would be

extraordinarily expensive, especially if it could be used in selective communication [Knabe 19911.

DML provides an asynchronous multicast.

IV. MULTICAST ORDERING

An important property of synchronous communication is that any operations executed by the sender

upon return from the synchronous send are known to occur after the receipt of the message at the

destination. That is, synchronous send operations force particular orderings on the events that

follow a communication at both sender and receiver. Often these orderings are too strict and can

be substituted with cheaper orderings. DML port groups support three kinds of ordering: FIFO,

causal, and total. Causal ordering is the least widely understood and the most interesting from

theoretical and performance aspects.

A Causal Ordering

Causal ordering is based on the potential causality (or "happens before") relation [Lamport 1978].

The causal ordering method ensures that if the sending of m' causally follows the sending of

138

m, then each destination that receives both messages delivers m before m' (Birman et al. 1991 b].
Consider the example in Figure 3 concerning three threads, P, Q and R. P sends message m,
to R and then sends m2 to R. Upon receiving M 2 , Q sends m3 to R. It is probably intended
that R receive m, before M 3 ; at first glance, it seems that synchronous message passing would
be necessary to enforce this behavior. However, it is much more efficient to use causally ordered
asynchronous messages. Causal ordering forces R to receive m, before M3 without requiring
an explicit acknowledgement message. Causal ordering can be used in many instances where a
synchronous protocol might at first appear necessary.

P Q R P Q R P Q R

m , ml ,j mX
m22 m2

m33

ack - - .. - m

m2
m3

Unordered communication Synchronous communication Causal asynchronous
communication

Fig. 3. Causal ordering

Using asynchronous send operations, we can build a synchronous abstraction from a pair of
asynchronous message operations and use it when synchronous properties are desired. In DML,

this abstraction would have the same status as the built-in asynchronous operations. Of course,
one could argue that asynchronous operations can be implemented using synchronous operations
and extra threads. But this implementation incurs the extra message transmission costs we wish to
avoid in the asynchronous case [Birman and van Renesse 1992].

139

signature ORDERINGS =

sig
type causal dom
type total dom
datatype ordering = FIFO

I CAUSAL of causal dom
I TOTAL of total dom

val causalO: causal dom
val mkTotDom: causal dom -> total dom

end;

Fig. 4. Ordering signature

B Causal Completeness

DML's causal ordering implies a causal completeness property. Informally, this property guarantees
that there are no gaps in the middle of a process's causal message history due to crashes, although
the history may be truncated by a crash. More precisely, causal completeness states that for any
message, m, delivered to process P:

"* all m's causal predecessors that are destined for P will have been delivered to P, and

"* all rn's causal predecessors not destined for P will eventually be delivered to their surviving
destinations, despite subsequent node crashes.

There are a range of implementation techniques that satisfy this property.

C Ordering Declarations

In DML, orderings are associated with port groups. Recall that the mkGrp function from Figure 2
had an ordering argument. The signature for orderings is in Figure 4.

Elements (domains) of type causal dom and total dom may be used to enforce ordering
schema among multiple port groups. For instance, if two port groups were declared to be CAUSAL
with respect to the same causal- dom, data multicast through either the group is ordered relative
to data multicast in both groups.

V. MESSAGE STABILITY

One important property of synchronous communication is that when a synchronous send operation
returns, its message has been reliably received by the destination node(s). In particular, the

140

subsequent failure of the sender cannot prevent delivery of the message to the receiver. Message
stability can be expensive, because a sender must wait after transmitting a message until an
acknowledgement is received from a receiver. As computer networks and I/O hardware become
faster, they provide larger message throughput but spend relatively more time putting messages on
the wire. A sender and receiver cannot use this higher bandwidth effectively if every communication

must incur the round-trip packet latency of the network.

In practice, message stability need be achieved only at particular points in a stream of remote
sends (e.g., before dispensing cash from an automatic teller, before confirming a reservation to a
ticketing agent, or before closing a file). DML's portTransmit operation does not guarantee
message stability, but returns a CML event value, a token which can be redeemed for a guarantee
that the message has been received at its destinations.

In many other cases the multicast atomicity property suffices. The portTransmit operation
implements multicast atomicity when sending to multiple destinations.

VI. ORDERED EVENTS

One of the more remarkable features of Concurrent ML is its support of first-class synchronous

operations [Reppy 1991]. Many concurrent operations (e.g., timing out, message transfer, detection
of thread termination) block, and blocking operations are not easily embedded in new synchronous
operations. In CML, concurrent operations return event values' instead of blocking, which permits
new synchronous constructs to be constructed easily and elegantly.

Unfortunately, CML events are unordered and therefore not appropriate for some DML opera-
tions. For instance, consider the CML function

select: 'a event list -> 'a

which synchronizes upon exactly one element of its parameter list. If more than one element is
ready for synchronization, the function chooses one of them.

Consider using CML's select on a list of two receive events ordered by the causal ordering
property. If both receive events were available when the select was executed, it would be
inappropriate to choose nondeterministically between them, and instead, the prior event should be
selected. One could pass all ordered receives through a thread that released them one at a time, but
doing so imposes a total order when only a partial order suffices, thereby restricting concurrency
and, perhaps, leading to deadlock. Indeed, the Isis system [Birman et al. 1991 a], from which these
ordering and multicast properties are derived, constrains each node to receive a totally ordered

message stream.
1 An event should be thought of as the potential to block. In particular, it is not afuture, and functions which return

event values need not initiate a blocking operation.

141

signature ORD-EVENT =

sig
structure CML: CONCURML
type 'a ordevent

val resolve: 'a ord event list -> 'a ord event
v•K unord: 'a ord event -> 'a CML.event

val sync: 'a ord event -> 'a
val wrap: 'a ord event * ('a -> 'b) -> 'b ord event

end

Fig. 5. Ordered event signature

In contrast, DML provides ordered events that, while similar to CML events, behave as elements

of a partial order. Part of the ORD- EVENT signature is in Figure 5. The resolve operator selects

between ordered events in a manner consistent with the underlying partial order. The unord

function strips ordered events of their ordering information, and the sync and wrap operators

operate like their CML counterparts. Ordered events allow DML to inherit the nice features of

CML while preserving the information required to support ordered asynchrony in a pre-emptive

environment.

VII. EXAMPLE: REPLICATED PROCESSING

A more substantial example will illustrate both the ordering and stability issues. Suppose we

are given a distributed program that communicates using only point-to-point channels (see Fig-

ure 6); consider how we can make it tolerate single crash failures by replicating cach node

[Alsberg and Day 1976]. A sketch of a non-fault-tolerant implementation of the POINT- TO- POINT

signature appears in Figure 7.

In the fault tolerant version we replace each node P by a pair (P, P') consisting of a primary

node and a backup which will take over the role of the primary should it fail. The backup maintains

its internal state equivalent to the primary's, and, upon the primary's failure, produces a sequence

of output messages consistent with the state of the primary at the instant it crashed. To achieve

this, we arrange for the backup to observe exactly the same input messages as the primary, in the

same order. Where the execution of the primary is nondeterministic (e.g., because of pre-emptively

scheduled threads), we must ensure the backup takes the same nondeterministic decisions. We will

concentrate on the ordering and atomicity properties of internode communication, ignoring other

142

signature POINT TO POINT
sig

signature PortGroup: PORTGROUP

type 'a remote channel
(* Only one dest_port is permitted per channel. *)

val mkChannel: unit -> 'a remote channel
val mkSrc: 'a remotechannel -> 'a PortGroup.srcport
val mkDest: 'a remotechdnnel -> 'a PortGroup.destport
val portSend: 'a PortGroup.srcyport * 'a -> unit
val portAccept: 'a PortGroup.dest_port -> 'a

end

Fig. 6. Signature for simple point-to-point remote communication

functor SimpleP2P(structure PortGroup: PORTGROUP): POINT TO POINT
struct

structure PortGroup = Portgroup

local open PortGroup PortGroup.Ports
in

type 'a remotechannel = 'a port-group,

fun mkChannel () = mkGrp Ord.FIFO;
fun mkSrc g = #1 (PortGroup.mkSrc (g, ());
fun mkDest g = #1 (PortGroup.mkDest (g, ());

(* In practice there would be code to ensure only one
dest_port per channel. *)

fun portSend (src, data) = (CML.sync (portTransmit (src, data)); M);
fun portAccept dest = OrdEvt.sync (portReceive dest);

end;
end

Fig. 7. Non-fault-tolerant implementation of point-to-point channels

143

signature PROCESSPAIR =
Sig

val primary: bool ref
type schedule (C Information about nondete-Ministic decisions made

by primary *)
val backupchan: schedule port-group

end

functor ResilientP2P(structure PortGroup: PORT GROUP
and ProcessPair: PROCESSPAIR): POINT TO POINT =

struct
structure PortGroup = Portgroup

local open PortGroup PortGroup.Ports
in

type 'a remote-channel = 'a port_group,

fun mkChannel () = mkGrp Ord.TOTAL;
fun mkSrc g = #1 (PortGroup.mkSrc (g, ());
fun mkDest g #1 (PortGroup.mkDest (g, ()));
(* In practice there would be code to ensure only one destport

at each of the primary and backup. *)

fun portSend (src, data) =
if ProcessPair.primary then

(CML.sync (portTransmit (src, data)); M)
else ();

fun portAccept (src) =

OrdEvent.sync (portReceive src);
end;

end

Fig. 8. Fault tolerant implementation of point-to-point channel

issues including how the backup would use a meta- dest_ port to notice the failure of the primary

and how to handle nondeterminism due to thread scheduling and external I/O [Borg er al. 1989,

Birman et al. 1991a].

We represent each point-to-point communication channel in the original program by a port

group containing two dest-port's, one owned by each of the primary and backup nodes (see

Figure 8). The backup reads these messages and performs the same actions as the primary, except

that output messages from the backup are suppressed. When the primary fails, the backup assumes

the primary's role, setting the variable ProcessPair .primary to true. In addition there is a

point-to-point port group (ProcessPair .backup- chan) from the primary to the backup. The

primary uses this connection to send messages to the backup that resolve any nondeterminism, for

144

P P' Q Q' P Q P?

bb

mi m

Processor A Processor B

Logical message pattern Primaries and backups on different processors

Fig. 9. Message patterns in fault-tolerant process pairs.

instance, caused by internal scheduling decisions made in the primary.

A point-to-point message, m, from node P to Q in the original program is transformed into a

multicast from P to Q and its backup Q' (see Figure 9). Using a totally ordered multicast, Q and

Q' will receive this message in the same order, relative to other multicasts.

We must also ensure that the scheduling message, b, sent by Q over the backup channel is de-

livered at Q' after the causally preceding multicast, m. If synchronous, non-causal communication

is used, P must wait when it transmits m until both Q and Q' have received and acknowledged the

message. If causally ordered communication is used throughout, P can initiate the multicast and

immediately continue processing while the message is still being delivered. The causal ordering

protocol includes information in message b identifying m as a causally preceeding message that

must be delivered first. With synchronous, non-causal communication, an extra message delay is

inserted into the critical path of the program.

This performance penalty is more severe than at first appears. To increase the independence

of failures we might locate the primary and backup of a pair in physically separate locations.

To improve performance in the normal case (no failures) we might locate all the primaries near

each other (perhaps on the same computer). Now the synchronous approach performs much more

slowly than the asynchronous causal approach. In the synchronous case, all communication will

145

occur at the speed dictated by the primary-backup connections. In the asynchronous approach,

communication among the primaries can proceed at close to the speed attainable in the original

non-fault-tolerant program. Communication between primaries and backups can proceed slower,

in the background. Because messages are asynchronous, multiple primary-backup messages can

be combined automatically into a smaller number of large network packets which will make much

more efficient use of the network. We are not limited by network latency (round trip packet times),

but bandwidth. Bandwidth scales much better than latency on almost all network technologies.

But what happens if a primary fails before its backup node has received all of the messages

destined for it? The causal completeness property ensures that for any message received by another

node, the causally preceding messages destined for the backup will be delivered to it. Thus, if any
"evidence" of an action taken by the primary has been observed by another node in the program,

the backup will receive any prior messages from the primary. Conversely, if no evidence of the

final few actions of the failed primary is visible, then we can present the illusion that those actions

never took place. There remains the possibility that the backup will send out some messages that

duplicate the last few messages sent by the primary. These duplicates can be detected easily at the

destinations using sequence numbers.
We see that asynchronous communication would not be feasable in this example without

the causal ordering and completeness properties, which ensure that asynchronous messages are

delivered in the correct order even when they are delayed and nodes crash, and the multicast

atomicity property, which ensures that either all destinations receive the multicast, or none of them

do.

VIII. CONCLUSION

We have argued that asynchronous communication, coupled with appropriate ordering and failure

properties, permits higher network performance than synchronous communication. As networks

become faster relative to processors, asynchronous communication will be essential. Additionally,

we have argued for multicast as a communication primitive in support of fault tolerant and parallel

programming. DML's ordering properties, such as total and causal orderings, are essential to both

multicasts and asynchronous communication. They reduce the number of possible event histories,

without compromising performance.

146

REFERENCES

[Alsberg and Day 1976]

P. A. Alsberg and J. D. Day. A principle for resilient sharing of distributed resources. In

Proceedings of the Second International Conference on Software Engineering, pp. 627-644,

October 1976.

[Appel and MacQueen 1991]

A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In Programming Language

Implementation and Logic Programming, volume 528 of Lecture Notes in Computer Science,

pp. 1-26. Springer-Verlag, August 1991.

[Auerbach et al. 1991]

J. S. Auerbach, D. F. Bacon, A. P. Goldberg, G. S. Goldszmidt, M. T. Kennedy, A. R. Lowry,

J. R. Russell, W. Silverman, R. E. Strom, D. M. Yellin, and S. A. Yemini. High-Level

Lanugage Support for Programming Reliable Distributed Systems. Technical Report RC

16441, IBM T. J. Watson Research Center, January, 1991.

[Birman and van Renesse 1992]

Kenneth P Birman and Robbert van Renesse. RPC Considered Inadequate, 1992. In

preparation.

[Birman et al. 1991a]

Kenneth P Birman, Robert Cooper, and Barry Gleeson. Design Alternatives for Process

Group Membership and Multicast. Technical Report 91-1257, Department of Computer

Science, Cornell University, December 1991.

[Birman et al. 1991b]

Kenneth P. Birman, Andre Schiper, and Patrick Stephenson. Lightweight causal and atomic

group multicast. ACM Transactions on Computer Systems, 9, 3, pp. 272-314, August 1991.

[Borg et al. 19891

A. Borg, W. Blau, W. Gretsch, F. Herrmann, and W. Oberle. Fault Tolerance under Unix.

ACM Transactions on Computer Systems, 7, 1, pp. 1-23, February 1989.

[Knabe 1991]

Frederick Knabe. A Distributed Protocol for Channel-Based Communication with Choice,

September 1991. In preparation.

147

[Krumvieda 19911

Clifford D. Krumvieda. DML: Packaging High-Level Distributed Abstractions in SML. In

Robert Harper, editor, Proceedings of the Third International Workshop on Standard ML,

Department of Computer Science, Carnegie Mellon University, Sept. 26-27 1991.

[Krumvieda 1992]

Clifford D. Krumvieda. Expressirg Fault-Tolerant and Consistency-Preserving Programs in

Distributed ML. In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications,

June 1992.

[Lamport 1978]

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com-

munications of the ACM, 21, 7, pp. 558--565, July 1978.

[Matthews 1991]

David C. J. Matthews. A Distributed Concurrent Implemenation of Standard ML. Technical

Report ECS-LFCS-91-174, Laboratory for Foundations of Computer Science, Department

of Computer Science, University of Edinburgh, August 1991.

[Milner et al. 19891

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,

Cambridge, Massachusetts, 1989.

[Reppy 19891

John H. Reppy. First-class Synchronous Operations in Standard ML. Technical Report

89-1068, Department of Computer Science, Cornell University, December 1989.

(Reppy 1991]

John H. Reppy. CML: A Higher-order Concurrent Language. In Proceedings of the ACM

SIGPLAN '91 Conference on Programming Language Design and Implementation, pp.

293-305, June 1991.

148

Summaries of Poster Session Presentations

149

150

A Verification Environment for ML Programs

A. Cant and M. A. Ozols
Information Technology Division

Defence Science and Technology Organisation
PO Box 1500

SALISBURY 5108
SOUTH AUSTRALIA

Email: cant,maris@itd.dsto.oz.au

Abstract

A verification environment for Standard ML programs is described. The system is constructed within the
Isabelle theorem prover, directly from the operational semantics definition of Y, the functional subset
of the Core of SML. Both the static and the dynamic semantics of F are incorporated. Simple proof
procedures can prove Y programs correct by inferring the result of evaluation or elaboration demanded
by the Definition. The work will benefit those trying to understand the Definition of SML, and experts
who wish to explore possible modifications and extensions.

1 Introduction

In this paper we report on progress towards the construction of a verification environment for reasoning
about ML programs. The system we describe captures the formal operational semantics definition of
Standard ML (1] within the theorem prover Isabelle. Our work has arisen from the desire to explore
the role of formal semantics in the verification process, especially in the context of critical software, in
which a single error could have disastrous consequences. It complements work described in [2], where
we explored the role of denotational semantics in the verification process.

ML has evolved from its early days as a special purpose language for theorem provers [3, 4] to the
point where it is a serious programming language, expressive enough for many real applications, and
with numerous desirable features (such as strong typing, exception handling and modules) which modem
software engineering and critical software development require. Although, to our knowledge, ML has not
yet been used in critical software projects, we believe that the techniques described below are applicable
to any language built on rigorous principles. They will also be applicable to the problem of automated
reasoning about programs in process algebras such as CCS [5] and CSP [6].

The rest of this paper is structured as follows. In Section 2 we describe the structure of the Definition
of SML. In Section 3 we give a brief overview of Isabelle. Section 4 describes how our system is
constructed. Finally, Section 5 discusses the results and give suggestions for further work.

2 The Definition of SML

The rigorous basis for Standard ML is formally given by the Definition [1], and its companion Com-
mentary [7]. To quote from [1]:

"This document is a formal description of both the grammar and the meaning of a lan-
guage which is both designed for large projects and widely used. ... At a time when it is
increasingly understood that programs must withstand rigorous analysis, particularly for
systems where safety is critical, a rigorous language presentation is important even for ne-
gotiators and contractors, for a robust program written in an insecure language is like a
house built upon sand."

The Definition uses operational semantics [8] to describe the meaning of phrases in the language. This
method of language definition is a useful guide for the implementer of an interpreter or compiler for
the language. It is especially useful for describing the semantics of concurrent languages, where the
denotational semantics may be technically difficult and less easy to mechanise.

151

The Definition first presents the syntax for SML (both for the Core language and the Modules System),
introducing various identifier and phrase classes. The static semantics (elaboration) is then given in
detail. This involves a rich set of simple and compound semantic objects (such as environments, types
etc). Elaboration of a phrase is expressed by a sequent of the form

E F- phrase * result

where typically E is an environment, and the result may be a type or an environment. The 102 inference
rules capture all the possible inferences among these sequents.

The dynamic semantics is then given a similar, but quite separate, treatment. The fact that evaluation and
elaboration can be dealt with independently is an important aspect of SML. Often the same terminology
gets used in both the static and dynamic semantics but has a different meaning in each case, such as
"variable environment". Static and dynamic semantics meet at the level of programs, where the evaluation
of a program is only carried out if it elaborates successfully.

Standard ML has a number of phrase classes which are derived forms. For example, the program phrase
case exp of match is defined to be the more primitive language expression (fn match) (exp). Other
examples of derived forms are if, andalso and orelse, as well as lists and tuples. Inference rules only
need to be given for the phrases in the so-called bare language.

Because of their formal nature, and the size of the language, the Definition and Commentary are not light
reading, and are aimed at implementers and ML experts more than the general reader. The Definition
allows one in principle to explore language semantics, but detailed proofs done on paper using all the 196
inference rules are far too laborious: we believe that machine support is essential to be able to do this.

In constructing a system for reasoning about SML programs, our aim has been to capture the definition
of SML in as natural a way as possible in a powerful proof assistant. One might consider using Prolog
for this purpose [9]. However, we have chosen to use the theorem prover Isabelle, which has a number
of advantages over Prolog- it allows the use of concrete syntax; theories can easily be related to familiar
logics (such as First Order Logic and Higher Order Logic); and one has much finer control of proofs steps
and search. We believe, therefore, that Isabelle is an ideal tool for reasoning about operational semantics.

3 Isabelle

The theorem prover Isabelle (itself constructed using SML!) has been under development by Larry Paulson
at the University of Cambridge since 1986 [10, 11, 12]. Isabelle is a generic theorem prover, with an
expressive met-logic, in which the inference rules and axioms of object logics can be formulated. Isabelle
emphasises the natural style of reasoning, and thrives on inference rules such as those of operational
semantics. It is this fact which has been exploited in our work.

Isabelle carries out goal-directed proofs. A proof state consists of a goal, along with a number of
subgoals whose validity establishes that of the goal. Proving a goal involves reaching a proof state with
no subgoals, by means of the application of tactics, which transform proof states to new proof states. In
Isabelle a tactic may fail, or return one or more (and possibly even an infinite number) of new proof states.

The most important tactic is resolution: resolvetac thm an tries each theorem (object logic rule)
in the list thns against subgoal i of the proof state. For a given rule, say

[I B1 ,..., Bk 1] ==> B

resolution can form the next state by unifying the conclusion with the subgoal, replacing it by the
instantiated premises. (Note that unification in Isabelle is full higher-order unification [13]). Thus if
the subgoal is

[IA,,..., A. 1 = A

and A can unify with B, resolution will produce the following new subgoals:

[I =

152

in which the overbars denote the resulting formulae after instantiations have been made.

Isabelle also has a number of tact cals, used for building new tactics from basic tactics, for example:

tacl THEN tac2 (sequencing)

tacl ORELSE tac2 (choice)

REPEAT tac (iteration)

DEPTHFIRST pred tac (search)

The tactic DEPTHFIRST pred tac performs a depth-first search for a proof-state satisfying pred.
Usually pred is taken to be "no subgoals", so that the tactic will search for a proof of the original goal.

Isabelle also has answer extraction available, via so-called scheme variables. These variables can be part
of a goal; as tactics are applied the scheme variables may be instantiated during the proof.

4 Description of the System

At present, we have built a system for a non-trivial subset X of Standard ML - essentially the pure
functional (side-effect free) subset of the Core Language, including pattern matching, functions as first-
class objects and recursion. Therefore, we have excluded imperative features such as reference variables,
assignments, and exceptions, as well as the modules system. However, what remains is still an extremely
rich language.

The syntax, semantic objects and inference rules of Y are constructed as a new theory which is a (typed)
Isabelle object logic VC. The types of the logic are expressions, declarations as well as objects such as
values, environments, identifiers etc.

4.1 Syntax

Isabelle allows the user considerable freedom in the choice of concrete syntax. It is a great aid to
understanding to be able to use a nice concrete syntax which is also strictly maintained during a proof.
Our aim has been to use wherever possible the precise syntax of SML For example, functions are given
in SML by:

exp

fn match

match ::= pat => exp (I match)

which is easily expressed as the following Isabelle syntax declaration:

Delimfix ("fn _", Match -- > Exp, ...),
Delimfix (I'- => _", [Pat, Exp] --- > Match, ...

Delimfix ("_ => ",I
[Pat, Exp, Match] --- > Match, ...),

Note that Match and Exp appear as new types in the logic; thus Isabelle's type-checking will catch
syntax errors.

However, variables (and also value constructors and special constants) do need to be explicitly marked,
for example: fn (var x, var y, ... }) => var x + var y. Note that we are at liberty to
overload notation: for example, we can use curly brackets for record expressions, record patterns and
record values, just as the Definition requires. The same holds for lists and pairs. Isabelle can tell what
is meant from the context.

Another of Isabelle's strengths is the ability to include derived forms by means of parse translations
(which take a simple concrete syntax phrase such as case exp of match into the internal representation
of the appropriate bare language phrase), and print translations (which reverse the process). Once these
translations have been provided, we can use the derived forms freely in goals, and they will be correctly
dealt with.
I Actny. C is an extesion of First Order Logic.

153

4.2 Semantic Objects

In the spirit of [1], elaboration (static semantics) and evaluation (dynamic semantics) are treated separately;
this is reflected in the design of the system. Thus, separate Isabelle theories are maintained: one for
elaboration and one for evaluation. They have in common the syntax of Y itself.

The various semantic objects, such as values, environments etc are themselves given an appropriate
concrete syntax, and their properties described by means of inference rules within the logic L for the
various operations defined on these domains.. For example, variable environments are of the form

{I (xl,vi),... ,(X,v.)l}

for evaluation, and of the form

{I(Xi : ti) x : tn) I

for elaboration.

Typical inference rules are the following, which describe the operation of looking up a value in a variable
environment

val lookup =
[("lookuplrule",

" lookup (x, {I (x,v) I1, v)"),
("lookup2_rule",

" lookup (x, (I (x,v), bindseq H1, v)"),
("lookup3_rule",

"lookup (x, [I bindseq 1}, v) ==>
lookup (x, (I (y,w), bindseq I}, v)")];

4.3 Static Semantics

For the most part, the inference rules capturing the static semantics of Y are easily expressed in Isabelle.
For example, here is the Rule 6 for the elaboration of the atomic expression let dec in exp end. This
is expressed as the following Isabelle fragment

("Lettyrule", (* Rule 6 *)
"Ti C If- dec -> E ; combine (C,E,C'); C' exp -> t I]

=-> C I- let dec in exp end -> t ")

where combine is the operation which combines contexts together. Note the way that sequents are
written in these rules.

In the static semantics, the trickiest aspect to model is polymorphism. We need to set up a number of
inference rules to implement the considerable machinery of type schemes, type instances and closures
in order allow sound polymorphic typing.

4.4 Dynamic Semantics

Once again, it is straightforward to express inference rules. Consider, for example, the Rule 108, for
the evaluation of the above expression:

("Let_rule", (* Rule 108 *)
"(I E 1I-dec -> E'; combine (E,E',E''); E'' I- exp -> v I]

==> E I- let dec in exp end -> v ")

The dynamic semantics needs to have function closures, in order to have correct call-time environments.
Recursion demands the unfolding operation on environments. These have been incorporated in the system.

4.5 Proof Procedures

The proof procedures for reasoning about programs are quite simple Isabelle tactics which capture the
way one would construct an inference tree (7]. Starting from the initial goal (the root of the tree), we

154

keep resolving with the appropriate inference rules, simplifying environments as we go, until all language
phrases have disappeared. We then simplify using the inference rules for semantic objects until we reach
the leaves of the tree. Isabelle keeps track of the instantiations made as we go. Thus we can prove F
programs correct by inferring the result of evaluation or elaboration demanded by the Definition. Proofs
of ML programs involving pattern matching may require backtracking search. To accommodate this, our
proof procedures use the depth-first search tactical.

Polymorphic type inference, as one would expect, requires special handling. However, the actual work
of inferring the most general type of an expression is aided by Isabelle's scheme variables, which can
then be instantiated to type variables.

5 Conclusions and Suggestions for Future Work

The system is easy to modify, and is quite efficient, because it exploits Isabelle's liking for inference
rules, and keeps costly rewriting to a minimum.

We believe that the present work will benefit a number of people. It should be of help to beginners
trying to understand the Definition of SML, as well as implementers. It can assist experts who wish
to explore possible design changes and extensions to the language, by aiding reasoning about how the
various phrases will interact. We also believe that the system will benefit those interested in program
verification, equivalences and transformations.

The user interface is still under development. Ideally, it should offer the user a range of choices. A
minimal interface would be to mimic that of an ML interpreter, presenting only the value and type of
the most recently declared variable(s). The maximal interface would be to describe fully the proof of
each sequent, showing also the context before and after the evaluation or elaboration. This information
can quickly become too much to cope with.

In future work, we would like to extend the system to allow for a larger subset of SML. Exceptions and
imperative features will require proper handling of the state and exception conventions [1, 7], while the
inclusion of the modules system would allow experiments with subtle aspects of signature matching and
elaboration of functors and signature expressions.

Further work needs to be done on general proofs of correctness of algorithms written in SML, for which
we need to have an expressive specification language. Since our system is built on Isabelle's First Order
Logic, we already have the basis of such a language, while our system could easily be built on Isabelle's
Higher Order Logic, if required. Such specification constructs are under investigation as part of the
Extended ML language of Sannella and Tarlecki [14], and in current work of Gene Rollins, Jeannette
Wing, and Amy Moormann Zaremski at CMU on Larch/ML.

Another important line of investigation is that of reasoning about program equivalences and transfor-
mations [15, 16]. The operational semantics rules which define SML will need to be strengthened to
allow such reasoning.

We are also planning to apply our methods to concurrency, where operational semantics is frequently used
to give the meaning of language constructs: possibilities include CML [17], CCS [5] and the tasking
model of Ada.

6 Acknowledgment

The authors wish to thank Malcolm Newey (Australian National University) and Larry Paulson (University
of Cambridge) for their helpful suggestions.

155

Bibliography

[1] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
[21 A. Cant and M. A. Ozols. The Role of Denotational Semantics in Program Verification. Formal

Aspects of Computing (to be submitted), 1992.
[3] R. Milner M. Gordon and C. Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation.

Lecture Notes in Computer Science, No 78. Springer-Verlag, 1979.
[4] L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge

University Press, 1987.
[5] R. Milner. Communication and Concurrency. Prentice-Hafl, 1989.
[6] C. A. R. Hoare. Communicating Sequential Processes. Prenuce-Hall.
[7] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.
[8] G. D. Plotkin. A Structural Approach to Operational Semantics. Report, University of Aarhus,

Denmark.
[9] R. Sethi. Programming Languages, Concepts and Constructs. Addison-Wesley, 1989.
[10] L. C. Paulson and T. Nipkow. Isabelle Tutorial and User's Manual. Computer Laboratory,

University of Cambridge, June 1990.
[11] L. C. Paulson. The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning,

5:363-397, 1989.
[12] L. C. Paulson. Isabelle: The Next 700 Theorem Provers. Logic and Computer Science (P Odlfreddi,

ed), pages 361-385, 1990.
[13] G. Huet. A Unification Algorithm for Typed A-calculus. Theoretical Computer Science, 1:27-57,

1975.
[14] D. T. Sannella and A. Tarlecki. Towards Formal Development of ML Programs: Foundations and

Methodology. Report EFS-LFCS-89-71, University of Edinburgh, 1989.
[15] R. J. R. Back and J. von Wright. Refinement Concepts Formalised in Higher Order Logic. Formal

Aspects of Computing Systems, 20:799, 1990.
[16] R. Roxas and M. C. Newey. Proof of Program Transformations. HOL '91 User Meeting, Aarhus,

Denmark, Australian National University, 1991.
[17] J. H. Reppy. Concurrent Programming with Events: The Concurrent ML Manual. Dept of Computer

Science, Cornell University, Ithaca NY, October 1991.

156

Expressing Fault-Tolerant and Consistency-Preserving
Programs in Distributed ML

Clifford D. Krumviedat
cliff@cs .cornell.edu

Computer Science Department, Cornell University, Ithaca, NY 14853

ABSTRACT

Many of the programming problems particular to distributed environments involve violations of
consistency. For example, some applications require that replicated data copies be kept iden"*cal.
If explicit failure information is provided by the programming system, failure notifications must be
ordered so that distributed components maintain a consistent view of system membership. We are
currently adding features to the Standard ML (SML) programming language that help distributed
programmers preserve consistency. Our system, called Distributed ML (DML), introduces ports
and first-class port groups as a method of abstracting asynchronous multicasts. DML provides
meta ports, multicast orderings, and ordered events to help programmers reason about the dynamic
distributed environment. This paper contains three examples that illustrate DML's syntax and
operational semantics.

1. CONSISTENCY

There are at least two reasons that programmers write distributed programs. First, many applications require
parallelism. For instance, distributed databases and electronic mailers are inherently distributed; other
applications need real concurrency to execute quickly. Second, some applications must behave correctly
despite component failures. Running a single program on multiple, independently-failing computers is
an appealing way to achieve resiliency. File servers and air traffic controlling programs are examples of
applications requiring high availability.

Unfortunately, naive attempts to implement fault-tolerance and concurrency with distributed systems
can lead to violations of consistency [Birman 1991]. There are numerous consistency properties, and they
vary among applications. For instance, some applications maintain replicated data sets which must remain
consistent with each other. Data consistency is threatened if replicas receive concurrent updates in different
orders. Also, many applications aivide work among active processes and therefore require a consistent view
of outstanding tasks and available processors. Cowionent failures may lead to inconsistent system "views"
of active processes.

In a companion paper [Cooper and Krumvieda 1992], we discussed the Distributed ML (DML) pro-
gramming language and justified its asynchronous multicast primitives. Port groups, multicast orderings,
and ordered events are several of the tools that DML programmers can use to maintain consistency in a
distributed environment. In this paper, we present three DML programming examples and argue that explicit
failure information through meta ports can be used to maintain consistent views of system membership.

iI. EXAMPLE 1: RPC MULTICAST

The client/server model is a common paradigm in fault-tolerant distributed programming. In this model, a
group of server programs control a resource (e.g., a database or a speedy processor) while client programs

t
The author is supported by a National Defense Science and Engineering Graduate Fellowship sponsored by the Air Force Office

of Scientific Research/AFSC, United States Air Force, under Contact F49620-86-C-0127.

157

communicate with the servers to access the resource. Often, the servers are replicated to provide fault
tolerance. Here, communication is two-way; that is, clients initiate communications with a server and
servers send reply messages to waiting clients. If a server group has only one member, this communication
style is called RPC, or Remote Procedure Call. If there are several servers, the style is RPC Multicasz, often,
distributed toolkits (such as Isis [Birman and Joseph 1987)) directly support RPC Multicast.

One possible DML implementation of RPC Multicast would require a single port group shared by both
clients and servers; clients would ignore messages sent by other clients. However, this solution requires
each client to have a separate des Lport and would be too inefficient when clients greatly outnumber
servers (which is typical).

Instead, we define a type (' a, 'b) rpc-group. Clients send requests of type ' a to servers, while
servers send replies of type 'b to clients.

type 'a rpcreply = 'a * port id
type ('a, 'b) rpc_request = 'a * (('b rpcreply, unit) port group)
type ('a, 'b) rpcgroup = (('a, 'b) rpc request. unit) port_group

Data sent through an rpc-group are rpc.requests, pairs which contain a request and a port group
for replies. Replies are pairs containing reply data and a port-id identifying the replying server. All meta
data in this example has type unit.

The function request, used by clients to initiate RPC multicasts, has type

val request: (('a, 'b) rpcrequest, unit gview event) srcport * 'a ->
'b rpcreply destport , unit gview event

The first coordinate of the pair returned by request is a destination port used to queue server replies;
each reply contains data of type ' b and a port-id of the dest-port from which the request was received.
The second half of the pair is a unit qview event which, when CML. sync is applied to it, yields the
membership of the server group when the original message was delivered1. This information is enough to
collect replies in a number of different ways, one of which we will examine in section IV.

The server uses the function service to reply to client queries.

val service: ('a, 'b) rpcrequest destport * ('a -> 'b) -> unit

This function is used to register a "handler" function with a destination port. After a service call is
evaluated, incoming requests are processed automatically; replies are calculated by feeding requests to the
registered function.

The implementations of request and service are shown in Figure 1. At first glance, they seem to
be _/Aremely inefficient because the number of port groups required is linear in the number of requests
(assuming a bounded number of servers). However, port groups with only one destination port can be
implemented with point-to-point communication and are therefore cheap.

RPC Multicast clients receive a stream of reply messages and, to avoid blocking for messages that may
never arrive, they must monitor the servers for failure.

111. EXPLUCIT FAILURE INFORMATION

DML is intended to be used in asynchronous distributed systems, that is, systems in which communication
times are unbounded2. Unfortunately, many important problems that involve consistency among processes-

1The unit in unit gv-i ew event is the group's meta data type and will be discussed in section M.
2The word "asynchronous" is overloaded: asynchronous systems should not be confused with asynchronous communication.

Asyn, rnrono,' s communication (in which data senders do not rendezvous with data receivers) can occur in synchronous systems and
vice ,ersa.

158

fun request (sp, msg) =

let
val rg = mkGrp FIFO;

in
(#1 (mkDest (rg, ()), portTransmit (sp, (msg, rg)))

end;

fun service (dp, fcn)=
(wrap (unord (portReceive dp),

fn (msg,rg) => let val sp = #1 (mkSrc (rg, M));
in portTransmit (sp, (fcn msg, portID dp)); ()
end);

service (dp, fcn));

Fig. 1. Implementations of request and service

such as agreement on system membership and consensus on the value of a variable--cannot be solved in
failure-prone asynchronous systems [Fischer et al. 1985].

The DML runtime system circumvents this impossibility result by providing a (scalable) system-wide
membership service [Ricciardi and Birman 19911. The membership service maintains the set of active DML
nodes and can add and remove nodes dynamically. In particular, the service may delete nodes that appear
to have failed (perhaps because they didn't acknowledge a series of messages), even if they may still be
working properly.

DML port groups have meta ports that the membership service uses to inform programs of changes
to the system membership. Consider a portion of the signature PORT-GROUP (more of which is defined in
[Cooper and Krumvieda 1992]):

signature PORTGROUP =

sig
structure Ports: PORTS

type 'a gview
type 'a monitor event = SRCCREATE of 'a * Ports.portid

I SRCFAIL of Ports.port_id
I DEST-CREATE of 'a * Ports.portid
I DEST-FAIL of Ports.portid

val getView: ('a, 'b) port group -> 'b gview
val portMonitor: 'a gview -> ('a monitor-event * 'a gview) Ports.destport

end;

A value of type gview contains port group membership information, and a monitor-event describes
a specific event that triggered a change in the membership of some port group. All events provide the
port-id of the created or failed port; create events also carry information provided when the port was
created. The getview function uses the membership service, if necessary, to take a "snapshot" of its port
group argument. The portMonitor function examines its gview argument, adds a meta dest-port to the

appropriate group, and enqueues, at the beginning of the new dest-port, all changes (monitor-events)
that the group underwent since the gview was constructed. Conceptually. the dest-port returned by the
portMonitor functions is a stream of all membership changes-past, present, and future-to the port
group described by its gview argument since the view was created.

159

fun procReply (n, (dp, ge)) =

let
fun statel got =

if length got = n then I)
else sync (choose [wrap (unord (portReceive dp),

fn (x,id) => x :: (statel (id :: got))),
wrap (ge,

fn gv => state2 (destMonitor gv, got,
numDests gv, 0))]);

fun state2 (mdp, got, potential, noreply) =

if length got = n orelse
length got + noreply = potential then [I

else
sync (choose [wrap (unord (portReceive dp),

fn (x, id) =>
x :: (state2 (mdp, id::got, potential, norepiy)))

wrap (unord (portReceive mdp),
fn (DEST FAILED id,) =>

state2 (mdp, got, potential,
if member id got then noreply
else noreply + 1)

i => state2 (mdp, got, potential, noreply)));
in

statel H]
end;

Fig. 2. Implementation of procReply

IV. EXAMPLE 2: PROCESSING REPLIES

Recall the implementation of RPC Multicast of section It: clients are probably not interested in receiving a
destination port and a unit gview event from their requests. Instead, they would prefer to use a library
function to process incoming replies. We will define the function

val procReply : int * ('b rpcreply destport * unit gview event) -> 'b list

procReply takes an integer n and the result of a request call and returns a list of reply values. This list
will have length no greater than n, but may be less than n if fewer than n servers reply. Its implementation
is in Figure 2.

A thread executing the procReply function is in one of two states, depending on whether or not the
unit gview describing the query destination set has been built. Initially, the function is in statel, it waits
for either a reply to be received on the reply group dest-port or for the unit gview build to complete.
After the gview is completed, the function enters state2 and monitors for replies or failed query group
dest.ports. The variable got is a list of query dest-port port-id'S which have been acknowledged in
replies. The integer potential is the maximum number of replies, while noreply indicates the number
of failed dest-port's that never replied.

V. CONSISTENCY AND MEMBERSHIP

In sections II -nd IV we saw two examples of DML programs, and the latter motivated the need for explicit
failure information. An important issue in systems that support consistency-preserving programs is the way
they order failure information relative to other communication in the system. In DML, for instance:

160

1. When a src-port fails, its failure notification is ordered after all receive events for messages sent
through the port.

2. If two failures occur simultaneously, their failure notifications are ordered identically at threads that
receive them.

3. Any receive event of a port group will be ordered consistently with respect to a failure notification of
any of the group's ports.

Properties two and three will be important in the next example.

VI. EXAMPLE 3: REPLICATED STATE

Although the DML syntax does not provide for distributed references, they can be simulated using port
groups. In this example, we describe an implementation of distributed references through replicated state;
the value of the reference is replicated to provide fault tolerance and quick dereferences. However, updates
are slow.

Define the type ' a dref-query to be

datatype 'a dref_query = DEREF of ('a, unit) port_group
1 UPDATE of 'a;

Copies of the replicated state communicate through 'a dref- groupS.

type 'a dref group = ('a dref_query, 'a option) port group;
fun mkDGrp () = mkGrp TOTAL;

Each distributed reference has an associated dref-group; threads dereference and update by sending
messages through the appropriate group. For instance, the dereferencing function H can be defined by

fun !! g =
let

val replyGr = mkGrp FIFO;
in

portTransmit (#1 (mkSrc (g, NONE)), DEREF replyGr);
portReceive (#l (mkDest (repiyGr, 0)))

end;

Threads can install instances of the replicated state by calling the function install, defined in Figure 3.
The implementation of install is notable for several reasons:

1. Dereference queries receive replies from every copy of the replicated state. A more intelligent
(and lengthier) implementation would ensure that only one (ocal, if available) copy replies to each
dereference.

2. dref -groupS are totally ordered, so updates are received in the same order at each copy.

3. Updates and new dest-port creation events are ordered with respect to each other. This ensures that
a new replica R processes the same stream of updates that old replicas process after observing R's
creation.

4. There is no method for bootstrapping the example; in a complete implementation, there must be a
function for creating the first replica.

161

fun install g =

let
val xg = mkGrp (;
val (dest, view) = mkDest (g, SOME xg);
val mdest = portMonitor view;
fun server value =

OrdEvt.sync (resolve (OrdEvt.wrap (portReceive dest,
fn (DEREF g') =>

(portTransmit (mkSrc (g', 0), value);
server value)

I (UPDATE x) => server x),
OrdEvt.wrap (portReceive mdest,

fn (DESTCREATE (SOME g')) =>
(portTransmit (mkSrc (g', 0), value);
server value)

I => server value)]);
in

server (OrdEvt.sync (portReceive (#I (mkDest (xg, ()))))
end;

Fig. 3. Implementation of install

VII. CONCLUSIONS

We have illustrated that explicit failure information, coupled with the appropriate ordering properties,
permits a flexible and convenient notation for high performance asynchronous communication.

REFERENCES

[Birman 19911
Kenneth P. Birman. Maintaining Consistency in Distributed Systems. Technical Report 91-1240,
Department of Computer Science, Cornell University, December 1991.

[Birman and Joseph 19871
Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of failures. ACM
Transactions on Computer Systems, 5, 1, pp. 47-76, February 1987.

(Cooper and Krumvieda 19921
Robert Cooper and Clifford Krumvieda. Distributed Programming with Asynchronous Ordered
Channels in Distributed ML. In Proceedings of the ACM SIGPLAN Workshop on ML and its
Applications, June 1992.

[Fischer et al. 19851
M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM, 32, 2, pp. 374-382, April 1985.

[Ricciardi and Birman 1991]
Aleta M. Ricciardi and Kenneth P. Birman. Using Process Groups to Implement Failure Detection
in Asynchronous Environments. In Proc. 10th ACM Symp. on Princ. of Dist. Comp., pp. 341-353.
Montreal, Quebec, Canada, Aug. 19-21 1991.

162

Implementing ML on the Fujitsu AP1000

Peter Bailey
Malcolm Newey

Department of Computer Science
Australian National University

Abstract

The CAP ML project seeks to develop a version of ML that is suitable for use on a dis-
tributed memory multiprocessor architecture such as the Fujitsu AP1000. Language extensions
are proposed that have been developed in conjunction with a programmming methodology
that is appropriate to that of a massively parallel computer whilst retaining a functional style.
The implementation, which is based on the SML/NJ compiler and the SML2C compiler, is in
progress. This paper focusses on the language design.

Introduction

When one contemplates implementing a functional language on a parallel computer, what first
comes to mind is the well known advantage claimed for functional languages, that freedom from
side-effects allows multiple processors to be utilised for the parallel execution of multiple arguments
in any function call. There is also a long history of applicative language compilers which take
advantage of the property of referential transparency, for a variety of purposes. For example,
the implementation technique of graph reduction depends on it for achieving speedup through
concurrency. However, experience indicates the opposite - it is hard to harness a multiprocessor for
ML.

There are several lessons that have been learned that are important background as we embark on
the enterprise of providing a functional programming capability on a machine such as the AP1000.

* Purely functional larIZuages are not found suitable for large application programs. Lisp and
ML are far more widely used than Miranda; although the latter has been widespread for some
time, its niche in the market is in the education sector. Programmers still find important
uses, in major applications, for global data structures that are updated, and for i/o operations
that can't readily be characterised in functional terms.

* Although ML and Lisp both allow assignments to variables, the use of this feature is discour-
aged in situations where concurrency is expected. (ML discourages any such use by the very
syntax of reference operations.) Thus the programmer should seek to structure a program so
as to have as few routines as possible that side-effect the state.

* It is only sensible to spawn a process if it is likely to survive for a time which is long compared
to its setup time. Experiments where a compiler does its best to recognise which sets of
subexpressions can be executed concurrently show there is surprisingly little chance that
substantial parallelism can be achieved in that way; some estimates suggest that typical Lisp
programs would be unlikely to make effective use of just ten processors.

163

" The conclusion of all implementors of Lisp and ML compilers for parallel machines is that the
programmer should design algorithms with concurrent execution in mind and give explicit
advice about which parts of a program can be usefully mapped to processes. A common
design decision is for the system to spawn processes only at places where the user advises
that multiple arguments to a function should be evaluated concurrently.

" Most parallel Lisp and ML compilers have been implemented on shared memory multipro-
cessors and really depend on this fact for their success. The rule-of-thumb that has been
suggested is that each process should run for some thousands of instructions to have a cost-
effective existence. In many applications a programmer is likely to find many appropriate
situations.

" In a distributed memory machine, each processor has its own memory and so the setup cost
includes identifying (by following pointers) all relevant cells, copying these across a network,
and initialising a new heap space with this data. The operation is something like a garbage
collection so we would expect it to sometimes be most economical to simply copy all of the
heap space from one processor to another. In the distributed memory case, spawning processes
is likely to be appropriate only if such processes last for some millions of instructions, hardly
a function call.

Fujitsu AP1000 Cellular Array Processor

The AP1000 is a highly-parallel scalable computer with distributed memory. Each cell consists
of a SPARC CPU, a Weitek FPU, custom message controllers, and 16Mb of local memory. It
has a front-end host Sun4/330 which connects to the cells. These in turn are connected by three
separate high-speed networks - a 2D mesh-connection torus network, a broadcast network for one-
to-n communications, and a synchronisation network. Typical sizes are 64, 128, 256, 512 and 1024
cells.

This new style of expensive machine is of the same class as the Thinking Machine Corpora-
tion's CM-5, Intel's iPSC and Touchstone Delta. They share the common features of difficulty of
programming and paucity of software (beyond the C and Fortran compilers). The vanguard of
applications are those based in the numerical analysis of scientific problems. In these applications,
processors are typically allocated to independent calculations or computations on a hunk of an ar-
ray. Typical techniques are Monte Carlo simulation and Finite Element methods, just as employed
on SIMD machines.

Although MIMD machines exemplified by the AP1000 apparently have more scope for fast
general purpose computation, we must learn how to use them less for Physics problems and more
for AI (mathematics, knowledge, reasoning etc.).

Language Design

Fine grain concurrency, especially of the sort envisaged in graph reduction, is inappropriate where
there is no shared memory. Because functions are closures, there will be potentially large amounts
of heap space that must be copied from one processor to another, even for quite short expression
evaluations. We see very coarse grain parallelism as necessary for the combination of distributed
memory machine and applicative language.

164

It is expected that the programmer will carefully design algorithms with concurrency in mind
and will take complete charge of the processes, both as syntactic objects and dynamically executing
entities. Since we insist that the extensions to ML should retain the applicative flavour of the
standard language as much as possible, processes will take arguments and yield a result.

The API000 style of architecture imposes considerable overheads on process creation, and thus
we adopt a programming methodology that discourages the use of more processes than there are
processors. The programmer should aim to create the required processes early in the execution of
a program and expect that they will last for a time that is long compared to the process startup
time.

In order that long-running processes can be used successfully, we must allow them to cooperate
by passing information. In the case of the APlO00 this can only mean we provide communication
between processes by message passing or by distributed shared memory; currently, we have chosen
message-passing as the most efficient system to implement.

This design of the language is intended to support a two-level style of program structure where
the top level is the initiation of 'actors' that interact with each other by message passing. Within
these top level processes, the programming should resemble that of whole ML programs. where
I/O is replaced by message traffic among the 'actors'. Use of messages is certainly not referentially
transparent but the careful programmer can still structure each process in the applicative style and
write most component functions to be side-effect free.

Based on these major design decisions, we present paraML, an extension of Standard ML that
we claim is suitable for programming the highly parallel computers of the future. The APlO00 is
a leading example, being a machine with many powerful processors, each with its own large local
memory. The major extensions to Standard ML are given below.

Processes in ParaML

We make changes to two areas of ML to accomodate our notions of processes. We add a new sort
of declaration (ie process definition) and two new forms of expression - one to create a process
instance and one which gets the value computed by the process.

Process Definitions

The ML code that is the abstracted form of a process is declared in a way that is very similar to a
function definition. The difference is that the external view of a process must reflect the fact that
the process can receive messages on named channels. Thus the type of a process will have the form
similar to a -- 8 --+ -t where a is the type of the argument supplied, 3 is the type (a record type)
of the n-tuple of channels, and y is the type of the result of executing the process to completion.
The complete syntax is given in Bailey [1] and a forthcoming manual, but the following is the usual
way in which a single process form is defined.

declaration:
define pdef (channel chl, ch2, . chn) pat = exp;

binding:
val pdef = prd: 'a->'b ->> 'c

pdef is bound to the process form described in the definition; it is an NIL routine that takes
an argument matching pat. that produces a result by evaluating exp and that receives messages

165

on the channels chl, ch2, etc. pdef is called the process definition identifier. The words define
and channel are new reserved words for ML and ->> is a new type constructor that is used in
expressions for the types of process forms and process instances.

Of course, some processes that we wish to define will read no messages and so have no need of
the channel list. However, this must be signified, like the unit argument to functions. The following
syntax is appropriate in this case.

declaration:
define pdef nochannels pat = exp;

The indicator, nochannels, is a new reserved word. Finally, there may be several process
definitions written in the same process form.

declaration:
define pdef (channel chl, ch2, . chn) pati = expl I

pdef (channel chl, ch2, chn) pat2 = exp2
and pdef2 nochannels pat exp;

Process Creation

Each instance of a process is created in a create expression; the code associated with a process form
is applied to the arguments supplied (which must, of course, be of the right type) and a running
process is then in existence until the expression in the selected clause yields a result. This newly
created process executes concurrently with the process containing the create expression. Although
we introduce the notions with a simple, but very typical instance, the full syntax can probably be
inferred.

create p = pdef expl in exp2 end;

The syntax is intentionally close to that of local declarations, since the scope of the process
identifier, p, is just exp2. pdef is a process definition identifier and expi is the argument that will
be bound to the formal parameter of the process program. After this binding, process p is active
and executes concurrently with the evaluation of exp2 (called the body of the create expression).
The value that results from evaluating exp2 is deemed to be the value of this create expression.

Within its scope (exp2 in the above example), a process identifier is taken to be of type a ->>
,3, where a is the type of the channel record and 3 to be the type of the result.

It is possible to initiate multiple processes in the one create expression as the following example
indicates:-

create pt = pdefl expl
and p2 = pdefr2 exp2
in exp3 end;

Getting Results

In a create expression, the process identifier's scope is the body (of the create expression) so that it
can be used to reference the result of the process (when that result is available), to send messages
to the process and as a process descriptor that can be passed to other processes.

166

There is a polymorphic operator called result which takes a process as its argument and yields
the result that was produced by that process; result (p) will not return anything until process p
has terminated.

Message Passing

The way to send a message to another process is by invoking the predefined function send:

send p 8> c exp

In this example, p is a process identifier and c is one of the channel names of the process form of
which p is a process instance. The construct p #> c has type a channel and for type consistency
the message expression should have type a. The semantics of the expression is that the object that
exp evaluates to is sent on channel c to process p. The type of send is a channel - a - unit.
The sending process is not blocked The only possible exception that can be generated by a send
is where the process p has terminated. If process p does not have a channel c, then the error is
detected by the type checker.

The messages that are sent to a process on one of its channels are extracted from that channel
(a message queue) by the predefined function get, an example of which follows:

expression:
get #<C

result:
x: 'a

In this case, c is a channel of the current process, the type of which must have been a channel.
Both #> and #< are new operators, chosen to resemble the 10 redirection of UNIX.

An Example

The Sieve of Eratosthenes (SOE) is a classic problem with various solutions being algorithms
that are capable of efficiently using a large number of processors. In the solution below, we have a
pipeline of processes, each one of which takes care of the selection of one prime number. A sequence
of all odd numbers which is fed into one end of the array, is filtered as it passes along, so that the
sequence that goes to the nth process contains no multiple of any of the first n primes but contains
all other members of the original sequence. When the sequence is reduced to nothing a message
flows back the other way, gathering primes as it goes.

val sieve (channel data:int) ()
= let prime = get #<data

in if prime =-1 then nil
else create s = sieve ()

in let fun f -1 = send s#>data -1
fun f dv = if dv mod prime <> -1

then (send s*>data dv; f(get #<data))
else f(get #<data)

in f(get #<data);

167

prime::(result s)
end

end
end;

The main program is the following function:

fun soe(O) = nil I
soe(1) = nil I
soe(2) = [2] I
soe(n) = create s = sieve ()

in let fun genlist g if g<= n
then (send s#>data g; genlist(g+2))
else send s*>data -1

in genlist(3);
2::(result s)
end

end;

Methodology

There are a number of standard ways of structuring parallel programs, such as worker farms, space
partition, d-,,ta partition etc. We have coded examples of these to show that an application that
is amenable to solution by one of these strategies, can readily be written in paraML without the
programmer worrying about process creation and inter-process communication.

There is insufficient space available to properly discuss the various recipes, so the reader is
asked to watch for a subsequent paper.

Implementation

The SML of New Jersey compiler was used as the starting point for the implementation of paraML
on the AP1000. It is incomplete at this stage although sufficient of the task is done to have
uncovered some interesting problems. These problems and their solutions are presented in [1] and
will also be addressed in a forthcoming report.

References

[1] P. Bailey, "paraML a parallel extension of ML," B.Sc.(Hons) Thesis, Dept. Comp. Sci, Aus-
tralian National Univ., (1991).

[2] R. H. Halstead, "MultiLisp: A Language for Concurrent Symbolic Computation." ACM
Transactions on Programming Languages and Systems 7, 4 (October 1985), 501-538.

[31 M. C. Newey, "Towards a CAP Implementation of ML," Proceedings of 1990 CAP Workshop,
Fujitsu, Kawasaki (Nov. 1990).

168

Verification of Concurrent Systems in SML *

Paola Inverardi Corrado Priamin Daniel Yankelevich
I.E.I.-C.N.R. Pisa Univ. Pisa, Dip. Informatica Univ. Pisa, Dip. Informatica

HP Labs, Pisa Science Center

Abstract
There can be different views of a concurrent, distributed system, depending on who observes it.

The final user may just want to know how the system behaves in terms of its possible sequences of
actions, while the designer wants to know which are the sequential components of a system or how it
is distributed in space. Moreover, there is no widely accepted semantic model for concurrent systems.

In this paper we describe the use of the SML language in the implementation of a parametric
verification tool for process description languages. It allows symbolic execution of processes at different
levels, and provides facilities for equivalence checking.

1 Introduction

In this paper we describe the use of the SML language in the implementation of a parametric verification
tool for process description languages (PDL). In the recent past, many verification tools for distributed
concurrent system, which are based on process description languages, have been proposed (for a detailed
survey see (6]). Any of these existing tools is based on a specific theory and, therefore, it is suitable for
analisying a particular class of problems. In particular, all the existing tools are based on the so-called
interleaving models.

The tool we have realized supports more than one concurrency model and allows the user to simply
switch from one model to the other. Roughly speaking, it is a parametric tool that permits to observe
many aspects of a distributed system. Among the others the temporal ordering of the events and t" :!ir
causal or spatial relation can be studied. An introduction to the general motivations and to the theory
underlying our approach is given in [8].

The main motivation underlying our approach is that there is not only one kind of observer of a system.
More precisely, there can be different views depending on the kind of observer. The final user of the system
may just want to know how the system behaves in terms of its possible sequences of actions, in this respect
the interleaving semantics is enough for him. He looks at the system as a black box.

On the other hand, programmers who have to implement systems usually think in a truly concurrent
way: two concurrent processes are two concurrent processes not a single non-deterministic one. Also in
debugging a big system this way of thinking is more convenient, one truly concurrent run of a system gives
the same amount of information to a programmer than an exponential number of interleaving computa-
tions. Moreover, there is no widely accepted truly concurrent model, but there are many of them. A tool
allowing parameterization with respect to various models would also help in understanding which model
is more useful and would allow comparisons among them.

Parametrizing a tool in order to catch many different aspects of a distributed concurrent system
requires:

* to have a common description language for the various aspects to be considered;

• to have a very fine description of the system at hand, from which all the necessary information for
a large number of models can be extracted.

In order to satisfy the two items above we proceed in the following way: we first start from a very
concrete representation of the system under specification in terms of a particular transition system (in the
sequel denoted by Tccs), whose transitions are labelled by their proofs. On this very detailed description

*Research Partially Supported by Hewlett - Packard, Pisa Science Center

169

it is then possible to define abstraction functions, called observation functions, which permit to recast the
chosen observational model from the Tccs structure by throwing away some information on the internal
structure of the studied system. As an example, we can define an interleaving observation function which,
given a Tees computation, i.e. a sequence of transitions, returns the computation as observed in the chosen
model by forgetting, for any transitions, the whole proof but retaining the label of the performed action.
Analogously, it is possible to define functions that permit to retrieve all the common models presented in
the literature.

Once the interesting aspects to examine, i.e., once a specific observation has been chosen, one of the most
widely used facility concerns the ability of proving behavioural equivalences among communicating systems.
These equivalences, usually called bisimulations, asses that two systems are equivalent if, whenever the
first may perform a (possibly complex) activity, the other one may as well, reaching states that are again
bisimilar.

According to the purpose of having a very flexible tool for the analysis of distributed concurrent systems,
the implementation is modular and open. By open we mean that an expert user can define his/her own
observations and equivalences, and then use the standard facilities provided by the tool. We can see the
tool as logically divided into two parts: a kernel and a library. The kernel contains the definitions of the
input formalism, the functions to deal with simulation of processes and the functions to deal with the
observed behaviour of the processes. Also the interface facilities are contained in the kernel. This part
of the tool cannot be modified by the users and it defines also the interface that any observation module
has to exhibit. More precisely, each component module of the library must contain the definition of an
observation function and of an equality function between the observations of two computations.

To this respect the choice of SML as implementation language has been very convenient since SML
allowed an easy design and manipulation of the various modules. Since parametricity and open-endness
are two strong requirements for our environment, the modules system of SML turned out to be crucial. On
one side, it forces the user to obey to some constraints in defining, from scratch, his/her own component
through the notions of signature and structure. On the other side, the user can take advantage of the
already defined components by defining a new component as composition of previously defined ones.
through the notion of functor. Other important motivations to the use of SML have been the high
portability of the language and the high number of existing tools which are implemented in this language.
Indeed, a current work is the study of the possibility of the integration of our tool with other existing tools
in order to reuse, when possible, already implemented software.

In the following, we describe the architecture of the tool trying to outline the parts which have most
benefitted of the use of SML. Then we discuss our experience in using SML.

2 Underlying Theory

In this section, we will briefly recall the main definitions and results of the underlying theory,' the tool is
based on.

An extended explanation of the underlying theory can be found in [3], where a general methodology for
the definition of concurrent systems semantics is presented. This methodology is here instantiated with
the language CCS [9].

In its general lines, the approach consists of four steps:

I. Define a transition system that captures the operational behaviour of the system. This operational
description has to be very concrete, i.e. it has to capture all the information about transitions that
the language is intended to describe. It is very natural to associate to CCS a concrete transition
system, since the only information that a transition can carry on is its own proof. Hence, we choose
as the basic level of description for CCS the proved transition system, which is the standard transition
system of CCS, where the labels describe the proofs of the transitions.
Proved transition systems have been introduced in [1], and its algebraic versions in [10, 4], The
proved transition system for CCS is here called Tees.

2. Build the computations of the system as paths in the transition system, and structure them as an
observation tree (orderin,, them by prefix). The computations of the transition system Tccs are just
sequences of (proofs of) transitions. Once ordered by prefix, the computations an agent can perform
generate a (fixed) tree-like structure.

170

3. Define what are the observations of computations. These appear as labels on the nodes of the
observation tree, describing the relevant aspects to be considered.

To observe a computation means to abstract away some details of the operational des.ription that are
hidden to the particular observer. For example, the interleaving observation is den.ned by abstracting
away all the information in the proofs, recording only the actions of each transition and the order in
which they are performed. In this way, to each computation is associated a sequence of actions.

Observational theories of concurrency have been presented in many places, the approach taken here
mainly follows [2, 5, 4].

4. Define an equivalence between observation trees, based on the observations defined in step (3).

The equivalences that can be considered on observation trees are similar to those considered for tran-
sition systems. The so-called bisimulalion equivalences [12] take into account the nondeterministic
nature of processes, and hence are very natural for a theory of concurrent systems. Intuitively, two
systems are bisimilar if, whenever the first may perform a (possibly complex) activity, the other oue
may as well, reaching states that are again bisimilar.

DifTerent bisimulations can be found in the literature, here weak, strong and branching bisimulations
are considered. Also trace equivalence is considered, which identifies two processes if they can
perform the same sequences of actions.

In [3] a sound and complete axiomatization of many bisimulations for observation trees has been
given. These axioms give the basis for a rewriting-strategy to the bisimulation problem, and they
are used in this tool for implementing a rewriting decision procedure for strong bisimulation.

3 The System: architecture and implementation

In this section we describe the logical architecture of our tool. The architecture is illustrated in Figure 1.

OTHER TOOLS USER LIBRARY

Editors and TCCS: cCS agents
Graphical - CCS.. o-Transitions
Interfaces Sy.t.-

computations
S........... . . deadlock

reachability

The user specifies the Library of Observa' ion
desired observation Algebras

lob..,nt a
Interleaving Aob... .. oc

Tools l_.. . observed functionalities

trace equivalence

Algebraic -4 strong bisamulation
Tools weak bisimulation

rewriting techniques
branching bisimulation

Figure 1. The architecture of the tool

171

Each box in kigure 1 represents a logical step that a generic user must perform to check the equivalence
of two different distributed concurrent systems. Roughly speaking, these boxes are the kernei of our tool.
Instead, dashed lines represent possible interactions with other entities like other tools or libraries.

The first step to be performed is to provide the description of the system to be manipulated in CCS.
Then, the tool translates the CCS specification in the corresponding Tccs program. Tccs implements
our basic syntax and it is the most concrete observation we provide to the user. Since we want to give
to the user the possibility of defining his/her own observation algebras, we have equipped this module
with a signature. Such a signature says what is exported outside the module, and therefore which are
the offered functionalities. We register in the labels of the transitions all the information associated to it,
i.e., their proofs in the SOS system defining the operational semantics of the language [13]. Some of the
functionalities of this module are to check if a process has deadlock properties and to provide the string
representation of processes. Up to now, we use CCS [9], but it is easy to adapt Tccs to support other
formalisms by interacting with general compilers of specification formalisms.

The second step concerns the selection of the desired observation from a library. Also in this case,
a signature which specifies the general characteristics of observation algebras is provided. The signature
specifies which is the structure of agents, transitions and computations after the corresponding structures
of the Tccs have been observed by means of abstraction mechanisms. The used abstraction mechanisms
are the observation functions which take a Tccs computation and return the corresponding observed
computation. All the modules which describe observation algebras must have this signature, therefore
the functionalities which appear in this signature are parametric with respect to the chosen algebra. This
interface contains all the functions which interpret the constructors of the datatypes agents and transitions.
Moreover, the observation algebras must contain functions to perform the sequential composition and the
equality of two computations. Note that this is not the syntactical equality function: for instance if the
computations are partial orders, it implements an isomorphism checking. Moreover, a function to provide
the string represer tation of observed transitions must be given.

Once the observation algebra has been fixed, the description of the system at hand is translated in a tree
structure (the so-called observation tree) which permits to execute equivalence checking. The functionai-
ities provided over obscvation trees are the equality of two trees up to associativity and commutativi~y,
the building operator starting from an agent, an operator to reduce the size of these trees up to strong
bisimulation, and finally a rewriting strategy to test strong equivalence of two trees

Also a functor that lifts the basic functionalities of the tool to the level of observation algebras has
been implemented. In other words, it is possible to look at transitions and computations of a system in the
particular observation algebra selected. Analogously for the properties like deadlock and reachability. This
is a very important module, since it permits to realize the parametricity with respect to the observation.
Especially in this part has been crucial the choice of using SML. Indeed, the polimo-, : ", type mechanism
of the language has permitted to simply recast the theory in ML thus obtaining the wanted results.

We are now ready to check equivalences. Our tool supports trace equivalence and three bisimulation-
based equivalences (strong, weak and branching). All the equivalences ,-e checked by an adaptation of
the Paige-Tarajan algorithm based on partition refinement [11J. Finally, also a rewriting strategy to test
strong equivalence has been implemented.

Some comments are in order for the library of observations. The user can specify which observation
(s)he wants to use in th-ee ways. The first possibility is by choosing an already existent observation from
the library. The second one is by defining a new observation algebra from scratch as a new module in SML.
This definition follows some standars: it has to fulfill some requirements established in a signature. Once
this -igebra is defined, the user can choose it from the menu and use the algorithms and facilities with this
observation. While giving a definition, previously defined observation algebras and possible reuse of some
modules (for example the structure LAB of labels) can be of help to the user. The last possibility is to
apply an operator to the observation algebras that have already been defined. At present, the operation
we allow over observation algebras is the product, which takes two observations and compose them in a
new one. Obviously, the equivalence obtained in this way is finer than both the equivalences obtained
with each observation. indeed, it is finer or equal than the intersection of the equivalences. Many otner
operations could be defined over observation algebras, allowing the user to specify an observation domain
as an expression in a language of observations. From the implementation point of view this simply means
to define a functor whi-.h takes two structures which are observations and returns a new observation.

There is a wide spectrum of observations to choose from. The definition of new observations is also
easy. In this way, if a new theory is proposed within the methodology presented in [3] . it, is possible to
obtain an automatic support for testing it with few efforts.

172

The tool is implemented in SML of New Jersey (version 0.66 of 15 September 1990) and runs over
UNIX machines. Its code is organized into modules for ensuring a simple debugging and maintenance of
the system.

4 Conclusions

Our goal was to implement a prototype of a parametric verification tool for concurrent systems based on a
particular theory [7]. The main reason in choosing SML as the implementation language are the following.

"* The compiler of NJ-SML is of free-distribution. This makes our tool portable, easy to distribute.

"* NJ-SML is an high-level language adequate for rapid prototyping and its type discipline forces a nice
style of programming.

"* NJ-SML facilitates the interaction with many other existing tools already implemented in SM L and
permits to reuse code.

Since our main commitment was to stress the parametric aspects of the tool, NJ-SML has been partic-
ularly suitable to this purpose because of its algebraic nature. In a parametric setting to have signatures
and correspondent structures allows us to establish the basic operation into a signature which can be
instantiated with many different modules. Moreover, some of these modules can also be implemented by
the user, once fixed the signature. The functors facility provides a very powerful way of implementing
parametric modules with respect to an underlying algebra.

Besides these advantages, the fact of having non-functional constructs has been very useful since our
system has a part which is algebraic in nature and also includes some imperative algorithms [11.

However, NJ-SML interpreter and compiler lacks of some important features. The version we have
used is not well-documented and it does not provide facilities for developing interfaces, graphics and so
on. It is also difficult to modify system parameters. Moreover, the error handling routine is poor. We
think that all drawbacks are due to the absence of an integrated programming environment, which will be
very helpful in prototyping in SML. A minor drawback is caused by the absence of overloading facilities
which forced us to use too many different identifiers.

Acknowledgment: Giovanni Mandorino has implemented the algorithms for bisimulation testing and
has participated in many discussions.

References
[1] G. Boudol and I. Castellani. A non-interleaving semantics for CCS based on proved transitions. Fundamenta

Informaticae, 11(4):433-452, 1988.

[21 P. Degano, R. De Nicola, and U. Montanari. CCS is an (augmented) contact free C/E system. In M. Venturini
Zilli. editor, Advanced School on Mathematical Models for the Semantics of Parallelism, 1986, volume 280 of
Lecture Notes in Computer Science, pages 144-165. Springer-Verlag, 1987.

[3] P. Degano, R. De Nicola, and U. Montanari. Universal axioms for bisimulation, 1991. Submitted for pub-
lication. An extended abstract appeared in Proc. Workshop on Concurrency and Compositionatity. Goslar.
1991.

[4] G. Ferrari. Unifying Models of Concurrency. PhD thesis, TD-4/90, Dipartimento di Informatica. Universita
di Pisa, 1990.

[5] G. Ferrari, R. Gorrieri, and U. Montanari. An extended expansion theorem. In Proccedinqs TAPSOFT '91.
volume 431 of Lecture Notes in Computer Science, pages 162-176. Springer-Verlag, 1991.

[6] P. !nveragdi and C. Priami. Evaluation of tools for the analysis of communicating systems. 1991. Bullettin of
EATCS, No.45.

[7] P. Inverardi, C. Priami, and D. Yankelcvich. A parametric verification tool for distributed concurrent systems.
1992. Submitted to CAV'92 - Montreal.

[8] P Inverardi and D. Yankelevich. Parametric true concurrent reasoning about distributed systems Te(linical
Memo FlPL-PSC-91-24, Hewlett-Packard Laboratories, Pisa Science Center. Pisa. 1991

I1' R. Milner. Communication and Concurrrncy. Prentice-Hall Internationat. Englewood Clffs. 1,',

173

[10] U. Montanari and D.N. Yankelevich. An algebraic view of interleaving and distributed operational semantics
for ccs. In Proceedings Category Theory and Computer Science '89, volume 389 of Lecture Notes in Computer
Science, pages 5-20. Springer-Verlag, 1991.

[11] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing, 16(6):973-989,
1987.

[12] D. Park. Concurrency and automata on infinite sequences. In 5"' GI Conference, vol. 104 of LNCS, pages
167-183. Springer-Verlag, 1981.

[13] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Computer Science
Department, Aarhus University, 1981.

5 Appendix: A Very Simple Example

The input of the user is italic while plain text denotes the tool output. Comments axe in c 4 .

5A4 -t& cqda 7 &-4 IMtOl.5k A4 A.f i. rA..~ A.4h d..N/G4.~ (M.4 Jae. i.

CHOOSE AN OBSERVATION ALGEBRA:
SPO ==>Spatial Partial Orders Strong
SPW ==>Spatial Partial Orders Weak

POR =*,Partial Orders Strong
POW ==:Partial Orders Weak
INT ==*Interleaving Strong
WEA ==>Interleaving Weak

STE ==*Multisets Strong
ALS =*Abstract Localities Strong

POW
OnC4& U141 O t4w. 0 .tI 41. UM T4*L 4 a.L.I 4omýd.~a~&

CHOOSE THE BISIMULATION ALGORITHM:
S ==>Strong Congruence
W ==*>Weak Equivalence and Congruence

B ==>Branching Equivalence and Congruence
T ==:#Trace Equivalence
R ==>Strong Rewriting

W

val p = a.)3 +,6.a;
val q = alo;
test(p,q);

a.0 + 6.a and al/ are not WEAKLY bisimilar
choO;

WEA

5k4 Ytdu awt dnrc i& C&&%44M

test(p,q);
a.0 + /.a and ace3 are WEAKLY bisimilar and WEAKLY congruent

174

A File System in Standard ML

Drew Dean
Drew.Dean@cs.cmu.edu

April 13, 1992

Abstract

This paper discusses the design and implementation of a distributed file system in Standard ML.
The file system is implemented using persistent storage from the Carnegie Mellon Venari project, and
communicates via Mach Remote Procedure Calls. This is work in progress, so details are subject to
change, and no benchmarks are available yet. Performance figures will be available for the workshop.

1. Introduction

Many file systems have been implemented since the introduction of magnetic disk storage. To better organize
files for humans, hierarchical directory structures are generally used. The implementation of these file systems
has traditionally been done in relatively low level languages such as C. In Berkeley Unix,' the user sees a
single directory structure. Under the covers, however, Unix is dealing with disk blocks as untyped arrays of
bytes. This is difficult and leads to code such as:

#define itod(fs, x) \
((daddrt)(cgimin(fs, itog(fs. x))+ \
(blkstofrags((fs), (((x) % (fs)->fs-ipg) / INOPB(fs)))))) 2

After implementing such structures on disk, more code must be written to allow network access. In con-
trast, Standard ML permits a concise implementation of a very similar abstraction using ML datatypes,
persistent storage, and Mach RPC to communicate. The ML implementation does not need to worry about
superblocks, inodes, or cylinder groups - it merely sees one large tree to traverse. Since tree traversal is
one of ML's strengths, the result is much more elegant than the above C example. The directory structure
contains two mutually recursive types, File and Dirent. The root directory of a file system is initialized to
DIRECTORY(ref U Dirent list ref),and so is a File.

datatype File = DATA of ByteArray.bytearray ref
I DIRECTORY of Dirent list ref
I LIEK of string

and Dirent - FILE of string * int * time-t * File

The string in the Dirent is the file name, as expected. The integer is a unique ID assigned to the file at
creation.

1 Unix is a registered trademark of Unix System Laboratories, Inc.
2 From /usr/include/sys/fo.hon &Mach 2.5 system.

175

2. Network Overview

In the 1990s, there is little point in designing a file system without taking network access into account. Since
this is ML, a nearly stateless protocol is indicated. Inasmuch as there are only a few operations on a file,
any stateless protocol will resemble Sun's NFS [2] to some extent. For now, we adopt an NFS-like protocol,
with the major difference being that our protocol communicates via Mach RPC instead of Sun RPC. With
that said, the major RPCs and an informal definition of their semantics are as follows:

"* Lookup takes a pathname and returns as a file handle the unique identifier for the file.

"* Read takes a file handle, offset, and request size, and returns a string, along with the number of bytes
read.

"* Write takes a file handle, offset, request size, and data as a string, and returns the number of bytes it
was able to write.

"* Mkdir takes a pathname and creates an empty directory of that name if possible.

"* Rmdir removes the empty directory named by its argument.

"* Create creates a zero-length file named by its argument, if possible.

"• Unlink removes its argument, if it does not name a directory, from the file system.

"* Kakelink makes its second argument a symbolic link to its first argument.

"* Readlink reads the contents of the symbolic link whose pathname is passed to it.

"* Stat returns the unique ID, time of creation, and file type of the pathname passed to it.

"* Readdir takes a file handle, (which must point to a DIRECTORY file), and a magic cookie. It returns
the directory entry corresponding to the cookie, and a new cookie, for the next directory entry. The
cookie is implemented by using the unique IDs; the first file in a directory is read by passing in a
special cookie. The same special cookie is returned to indicate the end of the directory.

Pathnames are passed as a list of pathname components; it is as.sumed that all but the last are directories,
and the last component is a file or directory name. Since symbolic links are resolved by the client, they are
stored as single strings. Since the actual definition of this interface is in MIG3 , both C and SML clients can use
it. A C interface, exporting Unix-like open, read, wzite, lseek, mkdir, rmdir, symlink, readlink,
stat, and close functions would be an interesting exercise, especially for benchmarking purposes.

All calls handle symbolic links by returning an error code to the client, along with the number of the
first pathname component that is a link. The client then does a readlink, to resolve the link, and retry
the operation with the result. Since symbolic links should be resolved from the client's viewpoint (in the
case of multiple file systems), an interaction of this sort is needed. It would be fairly simple to optimize this
interface by having the operation return the contents of the link along with the error code, thus avoiding
an immediate readlink RPC. It is assumed that the client keeps a table of mounted file systems and their
mount points; the client can find the longest pathname prefix to determine the correct file system. The
client is responsible for lo'p detection. The client keeps a list of links it has traversed, and linearly searches
this list for duplicates. While this approach may seem to have performance problems, based on my study of
symbolic link usage on various Unix machines, links are relatively rare, and the vast majority of links point
to their final targets. Thus, in most cases, link resolution takes constant time, while the worst case is 0(n2),
where n is the num' er of intermediate links.

3 MIG is the Mach Interface Generator. It generates stubs for using Mach's Remote Procedure Calls. It is roughly analogous
to Sun's rpcgen. While MIG originally only generated stubs for C and C++, Frederick Knabe and I reimplemented it in
Standard ML to produce Standard ML.

176

After translating the above RPC definitions into MIG format, SMLMIG produces the following signature
for the implementation of the file server:

signature NLFS
sig

exception mlfs of int
val lookup MachIPC.port * string list -> int * int
val read : achIPC.port * int * int * int -> int * string * int
val write :achIPC.port ijt * int * int * string -> int * int
val mkdir MachIPC.port * string list -> int
val radir NachIPC.port * string list -> int
val create MachIPC.port * string list -> int
val unlink MachIPC.port * string list -> int
val stat : MachIPC.port * string list -> int * int * int * int
val readlink : MachIPC.port * string list -> string * int
val makelink : MachIPC.port * string list * string -> int
val readdir : HachIPC.port * int * int -> string * int * int

end

Note that the last int return value is an error code, and the string lists are pathnames. The MachIPC. port
is the fileserver's Mach port.

The client interface has two parts: one part executes the client half of the protocol, and the other is an
application interface. The MIG-generated client interface is essentially the same as the server interface. The
application interface wraps the RPCs in logic to handle symbolic links and errors, resulting in a Unix-like
interface, but using exceptions to report errors instead of return codes and a global variable.

signature MLFSCLIENT f
sig

val pathSep : string;
structure Common : COMMON
type fh
val fopen : string -> fh
val read : fh * int * int -> int * string
val write fh * int * t * string -> int
val mkdir : string -> unit
val rudir string -> unit
val create string -> unit
val unlink : string -> unit
val stat string -> nt * nt * Common.FileType
val readlink string -> string
val symlink string -> string -> unit
val readdir :fh -> int -> string * int
val reinit unit -> unit
val mount string -> string -> unit
val umount : string -> unit

end

3. Implementation Details

The implementation of the unique ID scheme implies that a file system cannot have more than 231 files.
This is not considered to be a problem. A more natural unique ID would be nice, but there are no obvious
candidates, since nothing is fixed in the file system. The file system is strictly a tree; Unix-style hard links do
not exist. The absence of hard links is not considered a major drawback, since symbolic links are an effective
replacement. While an inode-like structure could be used, it doesn't seem to fit well into a high-level model

177

of a file system. If the lack of inode-like structures becomes a problem, they would be relatively simple to
implement and would not require a complete rewrite of the file system. The major changes that this would
imply are the elimination of the separate unique IDs, and Dirent's would have an inode component instead
of a File component. Presently, time-t is an integer, used to store the file creation date. Symbolic links
are not interpreted by the server, so they are stored as simple strings, presumably parseable by the client.

The allocation system for the file system is one of its more interesting features. Files are allocated
sequentially, until the heap fills up. At this point, the heap is garbage collected. Since the garbage collector
is a copying collector, this corresponds to disk defragmentation in a traditional file system. A generational
strategy for garbage collection will be very effective, as file lifetimes tend to be either very short or very long
- consider, for example, temporary files made by compilers and text editors, vs operating system binaries
and mailbox files. It may be necessary to periodically run the garbage collector, as a full scan of a large heap
is bound to be slow. Along with the lack of inode-like structures, this allocation scheme is an experiment
that may or may not succeed.

4. Low Level Details

The unique ID scheme uses a simple hash table that is updated by the create, mkdir, unlink, rmdir
RPC's, and used by the lookup RPC. Since unique IDs are consecutive integers, the identity function is a
perfect hash function, modulo hash table size. The hash table resolves collisions by chaining; this was very
simple to implement in ML.

The persistence mechanism for the file system is based on the Venari project's work. In turn, this code
is based on Mashburn and Satyanarayanan's Recoverable Virtual Memory (RVM) work [4]. The Venari
persistence work exposes two separate heaps to the ML programmer: the traditional volatile heap, and the
persistent heap[3j. Here the persistent heap contains the file system and little else, while the volatile heap
serves SML/NJ's needs for runtime storage. A key performance issue for persistence is how much data is
written out to disk. Since ByteArrays cannot be extended, writing past end-of-file requires that a new, larger
ByteArray be created, data copied, and new data written. The current system does not allocate any space
on file creation, but allocates 1024 bytes on the first write to a file. After that, the files grow exponentially
when writing past end of file. Directories were made to contain references to the list of directory entries to
minimize the amount of directory copying necessary.

Once the file system itself has reasonable performance, it is time to turn attention to network performance.
In general, of course, large transfers traverse the network faster than small transfers, just as with disk
transfers. The problem, however, comes when IP has to fragment packets. NFS, by default, sends and
receives 8 KB blocks. Since Ethernet has a maximum packet size of 1500 bytes, each NFS transmission
becomes 6 fragments. While this is acceptable on a single Ethernet, NFS does not work well across bridges
or routers, where losing one fragment is fairly common. Reducing the transfer size to fit within I network
packet provides a substantial performance increase in this case. While MTU (Maximum Transmission Unit)
discovery would be the right thing to do, it is very difficult in general. Since IP requires networks to have a
minimum MTU of 576 bytes, picking a transmission size of 1024 bytes seems ftirly safe. In the common case
of routing between Ethernets, there will not be any fragmentation. In the worst case, there will be at most
two fragments, so there should be a reasonable chance (certainly much better than with six fragments) of all
the fragments getting through the bridge/router. Note that FDDI has a MTU of about 4500 bytes, and in
general, increasing network speed seems to bring increasing MTUs, so while a RPC size smaller than 1500
bytes will become less optimal, the performance problems of packet fragmentation are always avoided. Since
the page size of most modern workstations is in the 4-8 KB range, a I KB network transmission should give
a nice readahead effect, assuming the file is being read sequentially from start to end, which is extremely
common.

178

5. Future Work

One of the key benefits of this file system implementation is its brevity. The entire file system is less than
1000 lines of user written code, so it is ideal for performing file system experiments. Tuning the file system
is the first priority:

* The best base for the exponential growth of the ByteArrays can be found experimentally. The tradeoff
between byte copying cost and wasted space needs to be determined, and perhaps made adjustable on
a per file system basis.

* An alternative scheme to support growable files would use a list of fixed length ByteArrays. While
this could improve write speed significantly, read performance may suffer slightly due to the need to
handle reads that straddle the block boundaries imposed by the server. Since reads tend to dominate
writes, this is an interesting tradeoff.

o Pathname-to-handle lookups should be cached. This cache can have a hit rate of 70-80%.[l]

* The file server could be multi-threaded. If a slight decrease in reliability is tolerable, one thread could
update persistent storage every 30 seconds, like the Unix update daemon. This could dramatically
decrease the number of disk writes actually done by the file system for processes appending to the
end of large files. The file server could also fork a thread (up to a limit) for each incoming request,
in which case a multi-threaded implementation would change the Dirent type to add a lock per file.
Depending on the desired semantics of multiple concurrent writers to a file, locks might only be used on
directories. Locking would proceed with each thread holding two locks at a time, much like a monkey
climbing hand-over-hand up a tree.

The major performance issue not addressed here is disk seeks. In general, controlling data placement on
the disk is impossible from ML. However, it is worth noting that RVM uses a linear mapping from virtual
memory address to disk block, so if it were possible to influence ML's memory use, then some control over
disk layout would become possible.

After the file system is properly tuned, there are several interesting directions to take this research. One
would be to follow the ideas of Gifford in [5], and make a content-addressable file system. With current RPC
technology, search engines would have to be implemented entirely on the server side. The grep family and
the Venari signature matcher could be integrated into the server without undue trouble, and one new RPC,
mkdirbycontent, added.

The file system currently has no protection mechanisms. While Unix-style mode bits are useful to protect
users from themselves, simple protection schemes do not provide any real security across networks. I believe
it is better to explicitly offer no security rather than poor security - this way there are no nasty surprises,
other than human error. The design of the file system does not preclude any access controls; again the
conciseness of implementation favors experimentation with new authentication protocols.

Another interesting direction to explore would be to add transactions to the file system. Transactions
could be both used to structure the file server, and made user-visible for users desiring consistent updates
of multiple threads. The Venari project is currently investigating the semantics of transactions in ML.

6. ML Issues

The design and implementation of the file system raised two points about the ML language: there is little
control over memory use, and there is no nice way to specify when non-pure functions (that is, functions that
generate and/or observe side-effects) should be evaluated. For most application programs, memory usage
isn't particularly important, but for systems programming it is vital. For example, if a cache is about to be

179

paged out to disk, it may make more sense to discard the cache instead. Consider a file system cache: there
is no reason to write the cache out, as it is almost as fast to read the original blocks back in again. Standard
ML does not offer this level of control, which would be quite useful inside an operating system.

The following fragment illustrates the function-application time problem:

functor rest(structure Netname : NETNAME
structure RPC : RPC) =

struct
val file.server-port = Netname.lookup(C"localhost", "MLFileServer")

fun lookup filename = RPC.lookup(file-serverport, filename)
end
structure T = Test(Netname)

Assume RPC is a structure containing client-side interfaces to remote procedure calls and Netname is the
interface to a network name server, from which processes can check in or out interprocess communication
ports. Clearly, T. file-server-port should be bound to the port the file server is listening on at runtime,
not at functor application time, as presently happens. While the desired functionality can be simulated by
judicious use of references, the result is not very elegant. With careful thought, it should be possible to
provide this functionality without too much modification to the semantics of ML.

7. Summary

With Standard ML, SMLMIG, and the Venari persistence implementation, it is possible to implement a
distributed file system. The implementation is concise and has reasonable performance. A variant of a
common protocol is used for access to the file server, while the file server itself is implemented in a fairly
unorthodox fashion.

I'd like to thank Eric Cooper, Frederick Knabe, Gene Rollins, Jeannette Wing, and the entire Venari
project for making this work possible, and for many helpful suggestions abnut this paper.

References

[1] Leffier, Samuel J., et al. The Design and Implementation of the 4.3 BSD Unix Operating System,
Addison-Wesley, 1989.

[2] Sun Microsystems, Inc. NFS: Network File System Protocol Specification, March 1989, RFC-1094, SRI
International.

[3] Nettles, Scott M., and Jeannette Wing, Persistence + Undoability = Transactions, August 1991, CMU-
CS-91-173.

[4] Mashburn, Henry, and M. Satyanarayanan, RVM: Recoverable Virtual Memory, Version 0.1, March
1991.

[5] Gifford, David K., and James W. O' Toole, Intelligent File Systems for Object Repositories, in LNCS
563, Springer-Verlag, 1991.

180

Implementing a Mixed Constructive Logic in Standard ML

James T. Sasaki Ryan Stansifer
Computer Science Department Department of Computer Sciences

University of Maryland Baltimore County University of North Texas
Baltimore, MD 21228 Denton, TX 76203

sasaki@umbc4.umbc.edu ryan@ponder.csci.unt.edu

April 10, 1992

1 Introduction

In this paper we describe an implementation of a programming language MCL which is based
both on constructive and classical logic. The language is intended for specifying, constructing, and
executing verified programs. By combining elements of both constructive and classical logic, it is
possible to eliminate some computational inefficiencies found in purely constructive type theories,
but in a way that does not drastically change the style of proofs. The availability of both construc-
tive and classical operations makes it possible to write specifications not available in other systems.
We are working on a prototype implementation of the language in Standard ML [5].

2 Constructive type theory

In a Constructive Type Theory (CTT), proofs of constructive logic can be viewed as programs [2,
4, 7]. If F is a logical formula in a CTT, then a constructive proof •r of F is a computation that
stands for a justification, a piece of evidence sufficient for believing in the truth of F. In the same
way that an arithmetic expression stands for an element of datatype int, the proof -r stands for an
element of datatype F. Thus in a CTT, proofs are programs, and formulas are datatypes.

Datatypes in Pascal, say, serve as very crude specifications of the programs that compute
elements of the type. Formulas in CTT's serve as more interesting specifications. For example,
formula (1) below could serve as the specification of dividing z by y.

Vx : int. Vy : int. 3q :int. 3r : int. x = q y+r (1)

For the purposes of this paper we are not concerned about specifying more completely the relation-
ship between x, y, q, and r, although this is certainly possible. The two existential quantifiers here
will suffice to demonstrate a source of computational inefficiency. In MCL syntax, formula (1) is
written

all x:Int.all y:Int.some q:Int.some r:Int.x=q*y+r

As a datatype, a universal formula acts like a function space, and an existential formula acts like a
product. Hence an expression that has the datatype given by formula (1) is a curried function that
takes two integers (call them x and y) and returns a ne,•ted tuple with two integer components q

181

and r and a final component of type x = q * y + r that specifies the relationship between x, y, q,
and r.

Since proofs are programs, one can write translators for constructive logic. The basic idea of
taking a proof of a formula and (say) interpreting it to produce a piece of evidence is the same as
the basic idea of taking an expression and evaluating it to get a value.

Unfortunately, the most obvious way to implement a CTT causes runtime inefficiencies because
uninteresting pieces of evidence are calculated. Consider the following proof/program of (1) written
in MCL:

fun x: Int . fun y: Int
<x Div y, <x Rem y, e> into some r: Int. P> into some q: Int. Q

In this proof we use some-introduction twice to exhibit the quotient and remainder. The expression
e stands for the proof that the chosen quotient and remainder have the right properties. P and Q
abbreviate the appropriate bodies of the existentials. The type-checker needs e to verify that the
program meets the specification (1). At runtime, if the function above is evaluated for specific x
and y, then values for xdivy, xremy, and e will be calculated. If we are not interested in the actual
piece of evidence denoted by e (and this is the usual case), then the evaluation of e is wasteful.
For our particular example, this is not much of a problem, but in the general case, evaluation of a
function that justifies Vx : t. 3y : t'. F could spend an arbitrary amount of resource calculating a
justification for F.

The usual method [3, 6, 7, 9] for avoiding this problem involves modifying the specifications.
Find the formulas whose proofs would cause undesired computations, then replace those formulas
by formulas that are classically equivalent but have only computationally uninteresting proofs.
(The proofs are uninteresting in the same sense that non- 0 expressions of type unit in SML are
uninteresting.) Modify the implementation so that it detects and optimizes away these uninteresting
proofs. The result is more efficient execution.

Unfortunately, this technique has the side effect of making these more efficient proofs harder to
read. For example, take the specification (1) above. If all we are interested in is q given x and y,
we could rewrite (1) as follows:

Vx :int. Vy : int. 3q:int. -'Vr :int. -'(x = q* y + r) (2)

Proofs of (2) are classically equivalent to proofs of (1), but such proofs are also less clear.

3 Mixed constructive type theory

A more direct way to improve the efficiency of the interpreter is to allow the programmer to indicate
what parts of the program are computationally significant. This is like Hoare logic in which the
program segments, which indicate the computational part, are entirely distinct from the assertions,
which are important for the purposes of verification. For example, the assertions can refer to
variables that do not appear in the program and have no meaning at runtime.

In MCL we are exploring a language in which the user specifies the computational content by
using both constructive and classical quantifiers and operations in specifications. We keep V. 3.
and V with their constructive meaning, but now add V*, 3, and I as the classical counterparts.
Now we can write the following specification:

Vx:int.Vy:int.3q:int.3"r:int.(x=q*y+r) (3)

182

which is computationally equivalent to (2) when uninteresting proofs of (2) are removed.
Programs in this logic can have two parts, a constructive part that actually denotes computa-

tions to be done, and a classical part that discusses but does not actually do computations. The
rules of constructive logic are mimicked in the classical parts of the logic, but the classical parts of
the proof also have access to rules of logic that are not constructively true. For example, to prove
either 3r :int . F or 3"r : int. F, you have to show how to calculate an appropriate r, but in the
constructive version, this calculation must be computable; in the classical version, this calculation
does not have to be computable.

MCL is based on the mixed constructive logic S1 of [8] where a formal semantics can be found.
The mix of classical and constructive formulas in S1 makes it possible to write the formulas that
are expressible when we mimic classical logic within constructive logic. Furthermore, it is also
possible to write certain formulas that are otherwise inexpressible. For example, the formula
(V*x : t . 3y : t' . F) =• (3y : t'. V'x : t . F) is true in the semantics of [8], but is not known to be
expressible in, for instance, NuPrl [2].

The rest of the paper is devoted to a description of MCL. We will concentrate mainly on
syntactic and implementation issues here.

4 Language

In this section we give a brief overview of the language. The most important constituents of the
language are the expressions/proofs and the types/formulas. We give a portion of the grammar for
each of these two categories to suggest the basic appearance of the language.

Expressions consist of basic computational units like integer numerals, pairs and functions, as
well as laws of logical deduction. Among the latter are the constructs for proving that something
exists (some introduction), and the construct for reasoning about the existence of something (some
elimination). All introduction and all elimination correspond to function abstraction and function
application, respectively.

(expr) (ident)

(function symbol)

<(expr), (expr)>

(expr).1

(expr).2

injl (expr) (type) end

injr (expr) (type) end
case (expr) when (ident) then (expr) when (ident) then (expr) end

fun (ident) : (type) . (expr)

(expr) (expr)

<(expr), (expr)> into some (ident) : (type) . (type)

let <(ident), (ident)> : (type) := (expr) in (expr) end

These are not all the expressions in the language. In particular, certain acts of reasoning about
integers, equality, and the like must also be represented by expressions in the language. For example,
the expression ax2(el ,eO) is an element of a certain equality type.

The collection of types in MCL contains primitive types like Int, but most important, types
corresponding to the logical connectives conjunction, disjunction, and implication. Conjunction

183

plays the role of the type of pairs. A more realistic programming language would contain more
general types for tuples and records, but they are not necessary for the purposes of studying the
efficiency of languages based on CTT's. Implication subsumes the role of the type of functions. It
is actually a special case of the "all" type. Quantifiers have both a classical and constructive form.

(type) (ident)

(primitive type)

(expr) (expr)

(type) -> (type)

(type) I (type)

(type) V (type)

(type) & (type)

all (ident) (type) . (type)

all* (ident) (type) (type)

some (ident) (type) (type)

some* (ident) (type) (type)

As in the language F-sub [1] there is a special type ?. The symbol ? can be used in place of a type
in hopes that the MCL system will be able to determine the correct type.

Here is the remainder example in MCL.

(fun x:Int. (fun y:Int.
<(Div <x,y>), <(Rem <x,y>), (ax2 xy)>

into (some r:Int.(x=(Add <(Mul <q,y>),r>)))>
into (some q:Int.(some r:Int. (some r:Int.(x=(Add <(Mul <q,y>),r>)))))

Here is the same example again. This time the MCL system is able to fill in some of the type
information.

(fun x:Int. (fun y:Int.
<(Div <x,y>), <(Rem <x,y>), (ax2 x,y)> into (some r:Int.?)>

into (some q:Int.?)))

5 Implementation

In this section we describe the SML implementation of the MCL language. This basic approach
could be taken to implement any interactive language system and is instructive for that reason.
We show the top-level structure of the MCL system and show how SML can be used to make a
stand-alone system.

The function TopLevel does the so-called read/eval/print loop. In fact, it does six things.

1. Prints a prompt to cue the reader for input and reads a line of input.

2. Parses the input line. This is the function of parse. This creates an abstract syntax tree ast.

184

3. Analyzes the expression. In particular, checks the types of all the subexpressions. The
function type-check performs this part.

4. Evaluates the expression to normal form.

5. Prints the expression, its type, and its normal form.

6. Loops.

Here is a (slightly simplified) version of the top-level function.

fun TopLevel 0 - (
let

val input = read (;

in
let

val ast = parse (input);
val (e',tau) = type-check (InitialTypeEnv, ast);
val e'' = eval -InitialEnv, e');

in
output (std.out, "expr: " - (print e') - \n);
output (stdalout, "type: " - (print-type tau) - "WI);
output (std-out, "eval: " - (print e'")) - "\n");
flush-out std.out

end hardle e =>
output (std-out, "Exception raised: "(System.exn-name e)"\n");

end;
TopLevel 0) '* Loop *)

)

Notice that exceptions during read, in particular interrupts, are not captured to allow the function
TopLevel to be exited.

The parser was implemented using ML-Lex and ML-Yacc, a lexical analyzer generator and
parser generator for Standard ML written by Andrew Appel, James Mattson and David Tarditi
of Princeton University. This is a particularly convenient way to build elements of the appropri-
ate datatypes. In this way full advantage can be taken of the ML language in representing and
manipulating syntactic terms of a language without sacrificing some user-friendly concrete syntax.
Although a yacc parser is not as simple as some LISP read macros, it is flexible, general, and based
on well-understood concepts.

It is possible in Standard ML of NJ to create a stand-along interpreter for a language by using
the command exportML. The following code causes an executable image of the ML system to be
written to the file mcl.

if exportML "mcl"
then (

output (std-out, "MCL version 0.4\n");

output (stdout, " Type -C to leave MCL and get back to SML/NJ\n");
TopLevel 0)

) else 0;

185

The function exportML returns false when the image is created. The executable image is a snapshot
of the system as of the time the function was called. Thus the image can be preloaded with all the
functions required for MCL lv defining them before the execution of the exportML. Executing the
file mcl causes the ML system to be reactivated at the point where the image was created. However.
exportML returns the boolean value true in the reactivated system. Hence. using the code above
starts the top-level read/eval/print loop as soon as the saved image is executed.

References

[(1 Luca Cardelli. F-sub, the System. Digital Equipment Corporation, Systems Research Center.
Palo Alto, CA, February 1992.

[2] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. Rance Cl-aveland, J. F. Cremer,
Robert W. Harper, Jr., D. J. Howe, T. B. Knoblock, N. P. Meudler. i "• _-.:aden James T.
Sasaki, and S. F. Smith. Implementing Mathematics with the NJ'." Proof Development
System. Prentice Hall, Englewood Cliffs, New Jersey, 1986.

[3] S. Hayashi and H. Nakano. PX: A Computational Logic. MIT Press, Cambridge, Massachusetts,
1988.

[4] Per Martin-L6f. Constructive mathematics and computer programming. In L. J. Cohen. J. Los,
H. Pfeiffer, and K.-P. Podewski, editors, Proceedings of the Sixth International Congress for
Logic, Methodulogy and Philosophy of Science, Hannover, 22-29 August 1979, ?ages 153-175,
Amsterdam, 1982. North-Holland.

[51 Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. M.iI Press,
Cambridge, MA, 1990.

[6] C. Mohring-Paulin. Extracting F•, programs from proofs in the calculus of constructions. In
Conference Record of the Sixteenth Annual ACM Symposium on Principle3 of Programming
Languages, pages 89-104, January 1989.

'71 James T. Sasaki. Extracting efficient programs from constructive proofs. ?hL thesis. Department
of Computer Science, Cornell University, 1986.

[81 .ames T. Sasaki. Verified programs in a simple type theory with mixed constructivity. Tech-
nical Report TR CS-91-20, Computer Science Department, University of Maryland Baltimore
County, 1991.

[91 Anne Sjerp Troelstra. Aspects of constructive mathematics. In Jon Barwise. editor. Handbook
of Mathematical Logic, pages 973-1052, Amsterdam. 1977. North-Holland.

186

Experiences with ML for Building an AI Planning Toolbox

Tom Gordon Joachim Hertzberg Alexander Horz

GMD, Al Division,
SchloB Birlinghoven,

D-5205 Sankt Augustin 1, F.R.G.
e-mail: {thomas, hertz, horz}Ggmdzi.gmd.de

Abstract
The quertz toolbox is a system of ML modules for implementing Al planners. We discuss why ML
was chosen to implement the system, provide a few guidelines for using the language, based on our
experience, and make some suggestions for language extensions and programming environments.

1 Background

The topic of our research is Al planning [1], i.e., constructing a course of action for an agent, given
information about the current state of affairs and the agent's goals. Although planning work in general,
and of course our own results (e.g., (3, 71) are interesting, they will not be of further concern to us here.
Rather, we focus on the reasons for our decision to implement qwertz, a planning software toolbox,
in Standard ML, and make a few comments about the language based on our three years of practical
experience with it.

The reason behind our choice of ML has to do with the state of the art in planning at the project
start time in 1988. In those days, many researchers, including ourselves, felt the field suffered from
a serious problem: there was an extensive literature about algorithms, systems, and techniques-such
as nonlinearity, abstraction, or hierarchical planning-but this literature was typically insufficiently
precise and complete to enable others to easily reimplement what was described. To quote T. Dean
from a paper written then [6]:

Today, these basic and intuitively appealing methods (for classical Al planning) are
known largely by association with archaic and poorly understood programs; these methods
cry out for careful reexamination and precise formulation.

One of our project goals was to rectify this situation. We aimed to "rationally reconstruct" classical
planners such as to facilitate their reimplementation by others, in their favorite language. Thus, clear
design and readable code were of prime importance, rather than tricky efficiency. Also, we dreamed
of finding a clear conceptual organization of planning methods which could be mirrored by an analo-
gous modularization of our planning software: orthogonal methods should be implemented orthogonal
modules (unless the methods only appear orthogonal).

So, setting aside the particular scientific problems of Al planning, we faced two general software
engineering issues. First, architecture: How to build a toolbox which faciliates the combination of

187

orthogonal methods, and experimentation with alternative implementations of each method? And
second, didactics: How to avoid the trap of understanding these methods ourselves, but failing to
deliver a description of them sufficient to allow others to easily reproduce our results? To cope with
these problems, we decided to use three techniques:

Functional Programming. We think that, owing to referential transparency, functional programs
are usually easier to understand than imperative programs.

Algebraic Specifications. This approach composes well with functional programming. Moreover, it
is conceptually close to the kind of mathematical models used increasingly within Al.

Literate Programming. Knuth's idea of programs as literature (41, intended primarily for humans
to read, rather than for computers to execute, fits well with our purposes.'

Our interest in functional programming and algebraic specifications lead naturally to our contem-
plating using ML. However, we were reluctant at first to take this step. Within Al generally, and also
within our institute, Common Lisp has established itself as the dominant language. Presumably, the
intended audience of our publications would be familiar with Lisp, but not necessarily ML. Nonetheless,
we decided that the benefits outweighed the risks in our case, and chose ML.

The toolbox now contains a sizeable library of modules. Some may be of general interest, such as
those for sets and streams, and often have multiple implementations. Example Al specific modules
are those for symbolic expressions, theorem proving, reason maintenance and heuristic search. Of
course, there are also functors for constructing Al planners. An experimental planner we have built
"beautifies" business graphics, and communicates with a graphics editor written in Common Lisp. The
qwertz toolbox will be made freely available sometime soon.

The rest of this paper explains the reasons for our preferring ML at the time, discusses some of the
problems we faced, including organizational ones, and reflects about the wisdom of our choice after three
years of actual ML use. We also take this opportunity to provide some feedback to those responsible
for •he evolution of the language, and those developing ML programming environments.

2 Why ML?

Of all the features which persuaded us to choose ML, three stand out: compile time type checking,
MacQueen's module system, and ML's small size. The principal arguments against static typing have
been: 1) type declarations are awkward in an interactive language; and 2) existing type disciplines
prohibit an unacceptably large class of correct programs, making it very unwieldy to implement certain
abstract data types, such as lists and other "containers". Type inference and polymorphism have solved
both of these problems quite well. Some Lisp programmers familiar with ML still maintain that ML's
type system is too restrictive, as it does not support union types. However, we have never missed this
ability in practice. Although there is at least one Common Lisp implementation which supports static
type checking, ironically this requires a large number of type declarations. We prefer ML's approach.

Perhaps it is not obvious why we should be so interested in compile time type checking, if our
main interest is the clear description of a software system. Does the fact that a Lisp system checks
types at runtime make a correctly typed Lisp program any less comprehensible to the human reader?
Presumably not; but being able to catch all type errors before publication is very comforting to human

'We have developed an SGML-based system for writing literate programs in any programming language [2]. The
system is available for free by anonymous ftp. Contact the authors for more information.

188

autbors. For us, a good type checker is a more important programming environment tool than a tracer
or debugger. An ideal environment would have all three.

Regarding ML's module system, its main attraction is its obvious relationship to algebra. There is
nothing comparable in Common Lisp. The language constructs which come closest to ML's signatures,
structures and functors are Lisp packages and CLOS, the Common Lisp Object System. However, the
differences are more numerous than the commonalities. Suppose one tries to compare structures to
packages. There is a single, global naming environment for Lisp packages, which makes them quite
inadequate for programming in the large. Suppose two programming teams inadvertently use the same
package names? Without access to source code, there is no way for package users to resolve such
conflicts. Even with source code, it is a thankless, tedious job. ML structure names are dereferenced
at compile time, making it easy, usually, to find a loading order which avoids such problems. There are
several other significant differences between structures and packages, such as the fact t:.at structures
may be organized hierarchically, but there is no space to discuss these further here.

A comparison of CLOS and ML's module system may be an interesting subject, but we can only
scratch the surface here. The specification of the CLOS portion of Common Lisp alone dwarfs all of
ML. For us, this is a major limitation. It would be too much to expect our poor readers to learn all of
Common Lisp, including CLOS, before they can comprehend our system. Alternatively, we could have
taken the trouble to define some subset suitable for our didactic purposes, but it is more convenient to
be able to refer to a number of excellent, existing texts on ML, such as [5].

However, there are deeper reasons for preferring ML's module system. The object-oriented paradigm,
at least as it is usually realized, unduly mixes specification and implementation levels. A class is not
(only) a specification of an object, but also a generator of its instances. It serves the role of both
signatures and functors in ML. Also, whereas membership of an object in a class is de-.ermined by a
simple search of an inheritance graph, whether or not an ML structure satisfies a signature is determined
by pattern matching, which is considerably more powerful and flexible. Finally, classes have elements of
both modules and abstract data types, but are less than optimal in either role. This said, one advantage
of CLOS, and other object-oriented systems, is the ease with which some abstract data types can be
extended. We have a bit more to say about this below, in our wish list for ML.

There are a variety of other reasons why we preferred ML for our project, but there is only room
to mention one more: ML is small, but not too small. It includes all the features we feel we need, such
as exception handling and a powerful module system. Some complain about the minimal size of ML's
standard library. But, for our purposes, this was more of a feature than a bug; it reduces the amount
our readers must know before they can begin to understand our system.

3 Programming Guidelines

It is possible to write incomprehensible programs in any language, and ML is no exception. We have
adopted a few conventions which we think make our toolbox easier to understand and use. These are
only guidelines. There have been occasions to deviate from them. Only the most significant guidelines
will be mentioned here.

Avoid Imperative Features. Presumably there is no need to justify this to a functional program-
ming audience. But we are happy that ML does have imperative features. When published algorithms
we needed are clearly imperative, we implemented them in the same way, rather than trying to invent
functional alternatives.

Avoid Milner Polymorphism. This guideline may appear somewhat strange. However, modules
provide a better way, in our opinion, to realize polymorphic types in most cases. Equality types and

189

the difficult system of weak type variables are two indications of problems with Milner's approach.
Why should there be a special language construct for one abstract data type? We use an EQ signature
instead, with an element type and an eq function, which may be any equivalence relation. To date.,
we have violated this guideline only once, in our STREAM signature for "lazy" sequences. How could
flatten : 'In stream stream -> 'Ila stream be realised without Milner style polymorphism?

Do Not Always Use Closed Functors. Some consider it good practice to use only closed functors,
i.e. to pass all substructures as functor parameters and to avoid free references to other functors. We
cannot agree. The design of a functor should respect the needs of its intended users. In a functor for
symbol tables, for example, another functor for hash tables may be used. Most users of symbol tables
will be happy to delegate responsibility for choosing a suitable hash table implementation.

Declare Only Meaningful Types in Signatures. Types are "meaningful" only if some set of
operations have been defined for them. In a signature for tables, e.g., it makes little sense to include a
key type when this type is completely unconstrained. Instead, include some comparison operation for
keys or include a Key substructure constrained by some appropriate signature.

Do Curry Function Definitions. This is another area where ML offers too much flexibility.
If some functions are curried and others not, willy nilly, the poor programmer tends to forget which
choice has been made, and the syntax of function calls tends to be an ugly mess. We chose, somewhat
arbitrarily, to curry function definitions.

4 Surviving in a Lisp World

In the Al division of our research institute, the de facto standard language is Common Lisp. Our choice
of ML has not made it easier to cooperate with our colleagues. Our original justification was that we
were using ML to specify our system, implying we would someday implement the system in Common
Lisp. We have been doing our best to avoid the inevitable. If you find yourself in a comparable situation,
here is a tip.

To facilitate communication between Lisp and ML processes, in either direction, we have imple-
mented an s-expression module for ML. This allows us to read and write most Lisp data structures.
The concrete syntax of our planning language, for example, uses s-expressions in the traditional way.
This makes it easy and familiar for others to use our planners as if they were working with a special
purpose Al language embedded in Lisp. Moreover, we have written a simple CLOS class for creating
and using instances of our planners. Lisp users need not know that the constructor function for the
planner starts an ML subprocess. What they don't know won't hurt them.

The overhead incurred by sending s-expressions between Unix processes is negligible, at least for our
application. Also, if the ML implementation has an application generator which removes all unreachable
code, such as the compiler, this arrangement does not place excessive additional demands on memory.
The runtime data structures we generate in ML would also have had to be generated in Lisp.

This approach is something of a crutch, to make up for the lack of some way to share functions and
other values, regardless of which language they are written in. We have a few more words to say about
this subject below.

5 Wish List

Let us take this opportunity to make a few suggestions to ML implementors. Some of them may not
be very constructive, for which we apologize, as it is probably too late to do anything about them. The

190

comments are grouped into those concerning the language itself, and suggestions for future programming
environments.

First the less constructive comments: We are not very happy with some aspects of ML's syntax.
It is too complex, both to read and, especially, to write. The main sources of the problem seem
to be the redundancy of curried and uncurried functions, as mentioned previously, and unfortunate
interactions between infix operators and the left to right evaluation strategy. It is not always clear
where one needs parentheses. Honestly, how many of you were not irritated that first time your ML
compiler complained about a Boolean expression like foo x andalso bar x? If the left conjunct does
not require parentheses, why should the right one?

This syntax problem brings us to another gripe. ML was originally developed because of some
weaknesses of Lisp. However, incomprehensibly, several good features of Lisp did not find their way
into ML, such as I) built-in data types for symbols and symbolic expressions, for easy input and output
of most structured data and, although we haven't needed this feature ourselves 2) the representation
of programs as symbolic expressions, making it easier to manipulate programs as data. We have added
symbols and s-expressions to our toolbox, but they would be easier to use if there were syntactic support
for them, just as there are special syntactic means to construct numbers and strings.

Here is a constructive suggestion: The only feature of object-oriented programming which we some-
times miss in ML is the ability to extend data types across module boundaries. There may be numerous
theoretical and practical difficulties which we do not appreciate, but perhaps it would be possible to
modify ML's datatype construct as shown in the following example:

functor MyColors (C : sig
datatype color = red I blue
val paint color -> unit

end) =
struct

datatype color = C.color I yellow

extend C.paint yellow =

end

Structures generated by this functor would have this principal signature:

sig
datatype color = red I blue I yellow
val paint : color -> unit

end

As datatype declarations are already permitted in signatures, this suggestion does not appear to
violate any abstraction barriers. The new key word, extend, is used instead of fun to continue the
definition of a function to handle the new cases.

In object-oriented languages, an object is an instance not only of its parent, but also of all ancestors
of its parent. Analogously, it would be useful if all structures matchirtg the extended signature also
matched the "parent" signature. To achieve this effect, the interpretation of data types would have
to be modified to mean that the type includes at least, rather than exactly, the constructors listed.
Failure to handle some constructor not mentioned in the signature, but part of the actual structure
used, should presumably raise a runtime Match error.

Here is our final language suggestion. Using include it is possible to extend signatures. A compa-
rable exclude declaration, for subtractive "inheritance", would be useful for minimizing dependencies
in functor definitions.

191

Let us now turn to environmental issues. Our comments here are based on our experiences with
SML of New Jersey, which we can highly recommend. But nothing is perfect.

First, SML of NJ requires enormous amounts of RAM. We fail to understand why ML should be
any more memory hungry than, say, Macintosh Common Lisp, which is quite useable with as little
as 2 MB of RAM. One reason for this problem may be that all modules used in a program need to
be loaded at once, during development. When an application is "exported", memory demands can be
radically reduced, due to dead code analysis and, of course, because the compiler is no longer necessary.
The compiler may also be used in batch mode, but in this case it produces binary files in another,
incompatible format, and does not perform type-checking across module boundaries. Our first wish
would be an improved batch compiler without these shortcomings. To test programs, the required
binaries could be loaded into a minimal environment allowing expressions to be evaluated, but no new
functions or modules to be compiled. An interpreter should suffice. It would also be nice if there were
some way to explicitly unload modules, to avoid having to restart ML when memory starts getting
tight.

Finally, it would be helpful if an ML compiler would produce object code compatible with others
languages. Ideally, the object code format would be the same as that produced by Unix C compilers.
This may be the single most important improvement, if one is interested in increasing ML's popularity.
Imagine gaining access to POSIX or X Window libraries just by defining appropriate ML signatures.
However, if this is not feasible, it would be quite useful if at least the functional programming community,
including Lisp and Scheme, would adopt some standard object code format suitable for this class
of languages. Poplog, which supports mixed ML, Common Lisp, Prolog and Pop-li programming,
demonstrates this can be done, but it is not a standard.

6 Would We Do It Again?

Yes, definitely. Despite our complaints, we still are convinced that we made the best choice. No better
alternative has appeared within the last three years. Nor are there signs of anything better on the
horizon.

References

[(] J. Allen, J. Hendler, and A. Tate, editors. Readings in Planning. Morgan Kaufmann, San Mateo,
CA, 1990.

[2] Thomas F. Gordon. The quertz SGML Document Types, Version 1.1 Reference Manual. Working
Paper 588, German Research Center for Computer Science (GMD), November 1991.

[3) J. Hertzberg and A. Horz. Towards a Theory of Conflict Detection and Resolution in Nonlinear
Plans. In Proc. IJCAI-89, pages 937-942, 1989.

[41 D.E. Knuth. Literate Programming. The Computer Journal, 27(2):97-111, 1984.

[5] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.

[6] W. Swartout. DARPA Santa Cruz Workshop on Planning. Al Magazine, 9(2):115-131, 1988.

192

[7] S. Thi~baux and J. Hertzberg. A Semi-Reactive Planner Based on a Possible Models Action For-
malization. In J. Hendler, editor, Artificial Intelligence Planning Systems: Proceedings of the First
International Conference (AIPS92), San Mateo, CA, 1992. Morgan Kaufmann. To appear.

193

Attribute Grammars in ML

Sofoklis G. Efremidis* Khalid A. Mughall John H. Reppy
Cornell University University of Bergen* AT&T Bell Laboratories

aofoklia~cs.cornel1.edu khalid@cs.cornell.edu jbrfzeseaxch.att.com

April 10, 1992

1 Introduction

Attribute grammars provide a formalism for assigning meaning to parse trees of a context-free
language (Knu68J. Because of their syntax-directed form and declarative style, they provide a useful
notation for specifying compilers [KHZ82] and language-based editors [RT88]. This paper reports
on a system we are developing, called AML (for Attribution in ML), which is an attribute grammar
toolkit for building language-based editors using SML [MTH90].

AML is a spiritual heir to the Synthesizer Generator project at Cornell University [RT88], which
focused on efficient incremental evaluation techniques, and the Pegasus project at AT&T Bell Lab-
oratories [RG86], which focused on providing a high-level foundation for interactive systems. In our
system we plan to build on the evaluation technology of the Synthesizer Generator while using a
higher-level foundation for the implementation.

In the next section, we give some background about attribute grammars. Then we describe
our specification language for attribute grammars, followed by a description of the internals of our
system. Lastly, we discuss the project's status and future plans.

2 Attribute grammars

An attribute grammar is a context-free language (CFL) together with a set of attributes for each
nonterminal and a set of attribute evaluation rules for each production. An attribute is either
synthesized or inherited- for each production p : Xo ::= X1 ... X,,, there are evaluation rules that
define the synthesized attributes of X0 and the inherited attributes of X..... , X,,.

2.1 Attribute evaluation
Each node of a parse tree in the underlying CFL is labeled with instances of the attributes associated
with the nonterminal at the node. The evaluation rules define a set of constraints on the attribute
instances, and computing the attribute values can be viewed as a constraint solving problem. An
attributed tree is said to be consistent if its attribute values satisfy the constraints defined by the
attribution rules. The simplest way to solve this problem is to topologically sort the attribute
instances by their dependencies and evaluate in topological order. For many grammars, however,
more efficient and specialized evaluation strategies can be used. Attribute grammars are classified by
their evaluation strategies; for example, the parser generator yacc implements a grammar in which
all attributes are synthesized and can be evaluated in a single bottom-up pass. One important
class of attribute grammars is the class of Ordered Attribute Grammars (OAGs) [Kas80l. OAGs

*This work was supported, in part, by NSF Grant ASC-•800465 and ONR Grant N00014-91-J-4123.t Support for this work provided, in part, by the Norwegian Research Council for the Sciences and the Humanities,
and the University of Bergen.

SAuthor's current address: Cornell University, Ithaca, NY.

194

are interesting because they include many useful "real-world" grammars, and because they can be
efficiently evaluated by fixed-plan evaluators.

2.2 Subtree replacement and incremental evaluation

in his seminal thesis, Reps showed that attribute grammars provide a useful formalism for defining
language-based editors [Rep82]. Such systems use attributed abstract syntax trees to represent
programs being edited and map editing operations to subtree replacements (e.g., a delete operation
is implemented by replacement with a null tree). After a subtree replacement operation, the tree will
no longer be consistent; Reps and others have described so called "optimal" evaluation algorithms
for restoring attribute consistency [Rep82, Yeh83, Hoo87, Hud91]. Applications of this technology
include structured editors for programming languages, interactive theorem provers [Gri87] and code
generators [Mug88].

3 Attribution in ML

Our approach to supporting attribute grammars in ML is a fairly conventional generator-based
approach. Our system takes an attribute grammar specification and generates a tree machine for
building and manipulating abstract syntax trees and an evaluator for the grammar. These are
combined with grammar-independent modules to construct a complete system. We chose this ap-
proach over embedding the system in the interactive ML system, because it allows more flexibility
for analysis and optimization. The remainder of this section describes our specification language.

3.1 The specification language

The AML specification language has two parts: a core language for specifying grammars and a module
language for structuring large specifications into separate units. The core language is sufficient to
specify an attribute grammar as a monolithic specification, but it is often useful to structure large
specifications in a modular fashion.

An attribute grammar specification in AML consists of three main parts: the abstract syntax,
the associated attributes, and the attribution rules. Chapter 4 of [RT88] gives a sample specification
of a language-based editor for a simple imperative programming language; we use this example to
illustrate our specification language.

The abstract syntax is declared using a limited form of the ML datatype declaration, which
we call a prodtype declaration. For example, the abstract syntax of expressions can be declared as
follows:

prodtype exp
7 RmptyExp

IntConst of int
I True
I False
I Id of string
I Equal of (exp * exp)
I NotEqual of (erp * exp)
I Add of (Crp * .rp)

This defines a nonterminal type exp with a set of productions. Prodtype declarations are more
restrictive than datatype declarations in that the argument types of the productions (constructors)
are required to be tuples of ground and nonterminal types.

The attributes associated with the nonterminals are declared separately from the abstract syntax.
For example, the following declaration states that expressions have a synthesized type attribute and
an inherited typing environment:

195

datatype typpe-t - BoolTy I IntTy I EmptyTy

attribute oxp with
synth typ : typeot
inher env : (string * type.t) list

end

The last part of the specification are the rules for attribution. These require notation for naming
the nonterminals of a production and the attributes of a nonterminal. We use ML-style pattern
matching, with minor extensions, to bind names to the nonterminals and use the notation X$a to
refer to attribute a of X. The following are the typechecking rules for expressions in the simple
editor:

attribution eO sep

= ZMptyEXp with rule eO$typ - EmptyTy end
I (IntConst _) with rule eOStyp = IntTy end
I (True I False) with rule eOStyp - BoolTy end
I (Id id) with rule eOStyp = lookupType(id, eOSenv) end
I (Equal(_, J) I NotEqual(. J) with rule eOStyp = BoolTy end
I (Add J) with rule eOStyp = lntTy end
I (Equal(el, e2) I Not~qual(el, e2) I Add(el, .2)) with

val error = if (incozmpatibleTypes(elltyp, e2$typ))
then NONE else SOME " TYPE ERROR

rule elSenv - eOSenv

rule e2$env - .Olenv
end

In these rules, eO is bound to the left hand side of the productions. Each clause defines a production
pattern with a collection of rules, which are ML expressions. We use the or-pattern notation to
group several productions that have identical rules (e.g., the last clause). The rules for a given
production can also be factored across several clauses (e.g., the rules for Equal). The val binding in
the last clause defines the local attribute error for those productions. Local attributes are associated
with productions, and are typically used to factor common subexpressions and, as in this case, to
communicate predicates about the node's state to external observers. For example, a pretty printer
might highlight a node's subtree when the error attribute is not NONE.

3.2 Modular specifications

Attribute grammar specifications tend to be considerable in size and non-trivial in complexity.
Attribute grammars as such do not provide any means for modularization. As pointed out in [Kas9 1],
an effective strategy is to allow a module for an AG to contain the attribution of one semantic aspect
only. Several approaches have been advocated to modularize AGs [DC88, FMY92, Far92]. While
these approaches address the problems of partitioning a grammar specification, they do not provide
the concept of a module.

Our approach is based on the module facility in ML. Grammar structures, akin to ML structures,
allow encapsulation and grammar signatures, akin to ML signatures, provide information hiding (i.e.,
the interface to the outside world). A grammar structure specifies a particular semantic aspect of the
problem being expressed as an attribute grammar. A grammar structure can have several grammar
signatures providing different views of the module. A relevant grammar signature is used by another
module to import exactly the information it requires. Grammar signatures allow information about
productions of the grammar and the attributes of the grammar symbols to be imported and exported
in a controlled manner, aiding comprehensibility and maintainability.

3.3 Computation with attributed terms

Since prodtype declarations in AML are just a restricted form of datatype declarations in ML, it is
straightforward to express computations on the unattributed view of a tree. This is especially useful

196

for supporting features such as syntactic reference (i.e., using a subtrc. as an attribute value) and
higher-order attribute grammars [VSK89, TC90].

It is also desirable to allow user computations on attributed terms. To support this, we generate
an abstract interface to the tree machine that provides for safe manipulation of attributed terms.
Operations include attributing unattributed terms, reading attribute values and 'ree editing (with
reattribution). This framework allows for a general and uniform platform for e'ildding applications
that can manipulate attributed terms and allow access to attribute valu's

4 Implementing attribution in ML

A number of issues must be addressed in the implementution of the tree editor and evaluator:

"* Navigation and subtree replacement operations for attributed trees must be supported.

"* It should be possible to convert between attributed and non-attributed versions of terms.
Attribution of a non-attributed term is done by the evaluator; the converse should also be
possible.

"* A mechanism for associating attributes with tree nodes must be provided. It is especially useful
for this mechanism to support sparse attribution (e.g., because of copy rules). In addition,
operations for accessing and setting the values of attributes must be provided.

The Synthesiser Generator uses a heavy-weight tree-node representation that relies on mutable
fields in the tree nodes (attribute instances, parent and child pointers, and other status fields).
This representation supports efficient navigation, tree editing and attribute evaluation, but does not
support sparse attribution, sharing of trees and easy mapping between values computed by user
code and abstract syntax trees. Furthermore, the heavy reliance on mutable fields does not map
well to ML, since it requires ref cells, which add extra space and garbage collection overhead.

Our approach is light-weight: we use the datatype equivalent of the prodtype declarations as
our tree representation, and use paths to label nodes and to support navigation. Mutable state, such
as attribute values, is held in auxiliary data structures that map tree nodes to their state. In this
scheme, an attributed tree is just a pair of an unattributed tree and a map from nodes in the tree
to their attribute instances.

4.1 Abstract syntax trees and paths

The prodtype declarations in an AML specification are translated to the equivalent ML datatype
declarations. Because it is often necessary to refer to an arbitrary tree node, we generate type
tree-t, which is the discriminated union of the nonterminal and terminal types. We also generate
functions for examining, visiting and replacing the children of a tree node. These types and functions
are contained in a structure that matches the following grammar-indeper -lnt signature:

signature TUE
Sig

type troeet
exception Child
val isLeaf : tree.t -> bool
va1 nChildzea troo-t -> int
val childrmen tree-t -> troeot list
val nthChkild (troo-t * int) -> treoot
val replacesth : (tree.t int * tree0t) -> treo.t

end (e TREI s)

The generated structure has a richer signature that is used by other grammar-dependent parts of
the system.

To specify a node in a tree we use a path from the node to the tree's root. Paths and their
operations are defined in a grammar-independent functor, called PathFUN, which is parameterized
by a structure T matching the TREE signature. The path type is:

197

datatype path-t
, Root of T.trae-t
I Path of (Uint * T.tree.t * path-t)

The path Path(i,t,p) specifies node t, where t is its parent's i'th child az 3 p is the path to t's
parent. One of the advantages of this scheme is that it promotes sharing of trees (i.e, dags), since
a single physical node can have several different paths. The functor PathFUN provides functions
for examining the children of a tree node that is specified by a path, tree navigation and subtree
replacement.

4.2 Attribution

We have chosen to store attributes and other mutable state information in auxiliary data structures.
These data structures map tree nodes, specified by paths, to state information. There are a number
of possible representations of these auxiliary maps, we are currently using hash tables keyed by
hashing a node's path. An alternative representation that we are considering is a shadow tree.

By storing attribute instances in auxiliary structures, we gain several advantages. First, it
means that the existence of an attribute instance for a particular node is completely independent
of the node's representation. This allows us to trade time for space, by recomputing attribute
instances instead of caching them in the tree. It also means that we can go back and forth between
attributed and non-attributed trees without rewriting (although attributing a tree does require
attribute evaluation).

There are two possible interfaces to the auxiliary data structures that hold the attribute instances
of a tree. In the generic (or grammar-independent) approach, there is a single type of all attribute
values and two functions to get and set an attribute value of a given tree node. The principal
advantage of this approach is that it allows the implementation of the auxiliary state to be grammar-
independent. In this approach, the code for the attribution rules must inject and project values from
the attribute type. The grammar-dependent approach is to generate specalized functions for getting
and setting each nonterminal's attributes. This approach is more efficient, since it exploits compile-
time information to avoid run-time type discrimination. In our current prototype evaluators, which
are hand-coded, we are using the former approach.

5 Status and Future Work

We have defined the core of our specification language and sketched the AML module facility. We
have been prototyping various parts of the run-time support system (such as the tree machine and
paths). We have also implemented some hand-written attribute evaluators for small giammars. We
are now implementing a compiler for our specification language.

There are a number of issues that we are planning to examine in the future:

"* Address issues of input and output: pretty printing of trees and editing. We plan to build this
on top of eXene [GR91.

"* Support a modular form of attribute grammar specifications as stated previously.

"* Our use of ML-style pattern matching in the attribution rules gives us something very close
to aitibute pafferns tFar92]; we would like to explore this similarity.

" Allow the use of type constructors, such as list, in the declaration of prodtypes. One can
imagine generalizing this to arbitrary parameterized prodtypes.

" Investigations of incremental attribute evaluation schemes with a focus on space/time tradeoffs
and parallel evaluation [KG92].

" The implementation of real applications using AML; in particular, a programming environment
for SML.

198

A forthconring technical report [EMR] provides more details and discusses many of the issues
raised in this abstract.

6 Ackn wwledgements

We would like to thank Tim Teitelbaum, David Gries, Sanjiva Prasad, Chet Murthy and Aswin van
den Berg for - imulating discussions pertaining to this project.

References

[DC88] Dueck, G. D. and G. V. Cormack. Modular attribute grammars. Technical Report CS-S8-
19, Faculty of Mathematics, University of Waterloo, Canada., May 1988.

fEMR] Eft, midis, S. G., K. A. Mughal, and J. H. Reppy. AML: Attribute grammars in ML.
Technical Report, Department of Computer Science, Cornell University (in preparation).

[Far92] Far'ium, C. Pattern-based tree attribution. In Conference Record of the 19th Annual
A (I Symposium on Principles of Programming Languages, January 1992, pp. 211-222.

[FMY921 Farrow, R., T. J. Marlow, and D. M. Yellin. Composable attribute grammars- Support
for rmodularity in translator design and implementation. In Conference Record of the 19th
An-,ul ACM Symposium on Principles of Programming Languages, January 1992, pp.
223-234.

[GR91] Gar sner, E. R. and J. H. Reppy. eXene. In Third International Workshop on .Ctandard
ML. Carnegie Mellon University, September 1991.

[Gri87] Grifin, T. G. An environment for formal systems. Technical Report 87-846, Department
of Computer Science, Cornell University, June 1987.

[Hoo87] Hoover, R. Incremental Graph Evaluation. Ph.D. dissertation, Department of Computer
Science, Cornell University, Ithaca, New York 14853, May 1987. Also Tech Report 87-836.

[Hud9l] HuiLon, S. Incremental attribute evaluation: A flexible algorithm for lazy update. ACM
The nsactions on Programming Languages and Systems, 13(3), 1991, pp. 315-341.

[Kas80] Ka-.tens, U. Ordered attribute grammars. ACTA Informatica, 13(3), 1980, pp. 229-256.

[Kas91] Kw.tens, U. Attribute grammars as a specification method. In Attribute Grammars,
A p. Lications and Systems, pp. 16-47. Springer-Verlag, 1991. Lecture Notes in Computer
Sci. ace 545.

[KG921 K1,iber, A. and M. Gokhale. Parallel evaluation of attribute grammars. Transactions on
Pc allel and Distributed Systems, 3(2), March 1992, pp. 206-220.

[KHZ82] Ka. tens, U., B. Hutt, and E. Zimmermann. GAG: A Practical Compiler Generator, vol.
14] of Lecture Notes in Computer Science. Springer-Verlag, 1982.

[Knu68] Kn lith, D. E. Semantics of context-free languages. Mathematical Systems Theory, 2, 1968,
pp 127-145.

[MTH90] Mi ier, R., M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
Ca abridge, Mas, 1990.

[Mug88] M ,'ha, K. A. Generation of Runtime Facilities for Program Editors. Ph.D. dissertation,
"Un versity of Bergen, Norway, 1988.

199

[Rep82) Reps, T. W. Generating Language-Based Environments. Ph.D. dissertation, Department
of Computer Science, Cornell University, Ithaca, NY, 1982. Published by The MIT Press,
1984.

[RG86] Reppy, J. H. and E. R. Gansner. A foundation for programming environments. In Pro-
ceedings of the A CM SIGSOFT/SIGPLAN Software Engineering Syamposium on Practical
Software Development Environments, December 1986, pp. 218-227.

[RT88] Reps, T. and T. Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-based Editors. Springer-Verlag, New York, NY, 1988.

[TC90] Teitelbaum, T. and R. Chapman. Higher-order attribute grammars and editing environ-
ments. In Proceedings of the SIGPLAN'90 Conference on Programming Language Design
and Implementation, June 1990, pp. 197-208.

[VSK89] Vogt, H., S. Swierstra, and M. Kuiper. Higher order attribute grammars. In Proceedings
of the SIGPLAN'89g Conference on Programming Language Design and Implementation,
June 1989, pp. 131-145.

[Yeh83] Yeh, D. On incremental evaluation of ordered attributed grammars. BIT, 23, 1983, pp.
308-320.

200

ML and Parsing-a Position Paper

Nick Haines
School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

April 13, 1992

Abstract
I would like to bring together several issues connecting ML and parsing.

First, the parsing of Standard ML is not simple, as the grammar is not
LR(k), so the parser in an ML system must be more sophisticated than
for some other modern languages. Second, ML presents an opportunity
to escape from the traditional type-unsafe parser generation technique of
source-code manipulation. Third, there is considerable work being done
on extensible syntax in other languages (and some on quotation and anti-
quotation in ML), and there is a natural and clean technique, using parsing
technology, allowing the user to extend the ML syntax arbitrarily.

1 Parsing ML

The I. L grarnmar[4] is not suited to simple parsing. The definition was written
before ,ny parser was constructed for the language, and was not inspected for
any of tle common desirable grammar properties (such as LALR(1)). It is not
LALR(I) in several places, and not LR(k) in at least one (typed sub-patterns).
Infix anc precedence declarations make parsing of application expressions so
awkward 'hat this is generally handled in a post-parse phase. None of the
current rai ge of ML systems accept the full language.

There siould certainly be work within the ML community to decide a new
standard grammar for ML, and there has been some progress towards this.
However, while we have this definition, it seems wise to work as closely to it as
possible in all regards, and to build a parser that accepts the full language as
defined. So we need a parsing algorithm which will accept the ML grammar.
There are several such techniques t2, 7], and some recent work has been done
by Jan Rekers on parser generation for these parsing algorithms[5]. However,
none of these techniques have yet been applied to ML. Rekers' algorithm is
particularly useful as it takes standard LR(k) parsing tables (usually k =0 or 1,
for small tables) and is very efficient for grammars which are 'nearly' LR(1).

201

2 Parser Generation in ML

"Traditional parser generators[31 are text manipulation programs, which read files
written in some grammar description language, calculate (typically LALR(1))
parsing tables for the grammars, and cut-and-paste sections of 'source code'
(unparsed strings) around a textual representation of the parsing tables in order
to produce the source of a parser, output as pure text. This is an unsatisfactory
approach, with several problems:

" one needs to define a language for describing grammars, and read (i.e.
lex, parse, and error-check) raw text files in this language. The language
has no computational power, and is simply a way of providing the parser
generator with the hierarchical structure of a grammar and a set of associ-
ated strings for the actions. It is not even possible to provide expressions
for these strings, to be evaluated at generation time, except in a very re-
stricted sense (unless one chooses to add another layer of generation and
write code to produce the original text file).

" one must write 'disembodied' sections of code, which are not compiled until
after the parser generation. Compiler error messages which emerge at this
stage must be traced by examining the generated source and extrapolating
back to the original source error. Making corrections then requires the
parser generation to be re-run.

"* the output parsing code is bound together with the parse tables in a single
object. One cannot change the parse tables and retain the parser without
recompilation. So allowing extensible syntax is difficult.

"* the 'malke' actions for the grammar are completely different to those for
the other parts of the language system. If one is using a specialised make
system (for instance, one acting solely upon ML source files), the parser
generation must be dealt with separately.

(Note: there are some sophisticated systems, such as those used at [N-
RIA, which go some way to ameliorate the first two problems, by (for instance)
providing good cross-referencing of compile-time errors and a more powerful
grammar-description language allowing one to specify better error-recovery be-
haviour. But the basic problem is caused by dealing with source text without
semantics, and that is not corrected in those systems).

ML provides an alternative approach-to define the signature of a grammar
(with actions), and to write a parser generator as a functor, taking a grammar
as argument and returning a parser. Then the full power of ML is available for
building grammars and their actions, the type-safety of ML ensures that the
generated parser does not cause runtime failures (the equivalent of the compiler
errors in the previous model), a suitable structure allows different parse tables to

202

be exchanged for extensible syntax, and the grammar can be simply integrated
into the ML separate compilation world.

Various work has been done on this in the past, particularly by Nick Rothwell
at LFCS[6]. I have worked on this code, and hope to produce a more fully
integrated version.

One reason why this approach has not been commonly employed before is
that there are type difficulties, seemingly requiring the different non-terminals
of the grammar to have a common type. The typical solution is to define a
single sum type (using the datatype declaration) of all the node types of the
abstract syntax. This introduces a layer of constructing and deconstructing
(with exception-raising on failed matches) without adding any real type-safety,
and the cost of these additional functions is high, since they must be called on
every 'reduce' action of the parser. I have been working on a new approach,
using simple pairs of functions which should be eliminated by a good optimizing
compiler.

Such a functor approach can also be applied to lexer generation (and has
been so applied), and I shall be integrating parser and lexer generation in this
way (so that they share a 'token' type, and present a single interface to the rest
of a compiler). Both parser and lexer generators are general, and can be applied
to other languages than ML. The parsers generated use Rekers' algorithm, so
can be applied to any context-free grammar.

3 Extending the ML syntax

The New Jersey compiler[l] is largely written in ML, and has lexers and parsers
generated using traditional techniques. These can be replaced by functorized
versions. Given a clear, public definition of the abstract syntax used by the
parser, and public access to the parser generator, users can define their own
concrete syntax for ML. By separating the parse tables (generated by the parser
generator) from the parser itself, the user can be allowed to 'switch in' their own
parse tables, including parts of their own language in their ML code, thereby
extending the syntax. Specialized syntaxes can be defined for particular prob-
lems, and user code and data can be written in their own form in a type-safe,
controlled way.

I have been working on the New Jersey parser with this goal, and although
there are some difficulties (the parser is quite tightly integrated to the rest of
the compiler, especially for error-handling), they are not insuperable.

Ultimately, this tool provides a technique for the concrete syntax of ML to
be 'corrected' without losing the abstract syntax on which the semantics, which
are commonly perceived as the main strength of the language, are based.

203

References

[1] Andrew W. Appel and David B. MacQueen. A Standard ML compiler.
In Functional Programming Languages and Computer Architecture, pages
301-324. Springer-Verlag, 1987. Volume 274 of Lecture Notes in Computer
Science.

[2] J. Earley. An efficient context-free parsing algorithm. Communications of
the ACM, 13(2):94-102, 1970.

[31 S. C. Johnson. Yacc-yet another compiler-compiler. Computing Science
Technical Report 32, AT & T Bell Laboratories, 1975.

[4] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[5] Jan Rekers. Generalized LR parsing for general context-free grammars.
Technical report, CWI, 1991.

[6] N. Rothwell. source code and examples of functor-generated parsing. per-
sonal communication to the author.

[7] M. Tomita. Efficient Parsing for Natural Languages. Kluwer Academic
Publishers, 1985.

2

204

